Denominazione: Aggiornamento: Fonte: Elaborazione:

kvh 01.09.2010 Holzforschung Austria HFA, NEU

Legno massiccio da costruzione con giunti longitudinali a pettine

Dimensioni tipiche [mm]

Altezza	Larghezz	Larghezza					
	60	80	100	120			
120	•	•	•	•			
160	•	•					
200	•	•	•	•			
240	•	•		•			

Lunghezze fino a13000 mm

Descrizione generale

Il legno massiccio da costruzione giuntato a pettine è legno massiccio classificato, essiccato artificialmente e piallato, che può essere prodotto praticamente in qualsiasi lunghezza mediante giunzioni a pettine. Per l'impiego strutturale, il legno massiccio da costruzione giuntato a pettine deve essere classificato secondo la resistenza in modo meccanico o visivo, in conformità alla ÖNORM DIN 4074-1. Per il legno di conifera e il legno di latifoglie esistono classi di resistenza differenti. Il giunto a pettine è regolamentato dalla UNI EN 385. Oltre ai requisiti di prestazione del giunto a pettine, questa norma stabilisce anche un' umidità massima del legno del 18 %. La colla utilizzata deve soddisfare i requisiti della UNI EN 3010 EN 15425 per i componenti di legno con funzioni portanti. A seconda della specie legnosa, il legno da costruzione presenta anche una resistenza naturale diversa rispetto all' attacco di organismi nocivi. Per aumentare la durabilità, il legno può essere trattato preventivamente con sostanze preservanti.

Basi tecniche

ÖNORM B 3802-2	Holzschutz im Hochbau, Chemischer Schutz des Holzes
ÖNORM DIN 4074-1	Sortierung von Nadelholz nach der Tragfähigkeit - Teil 1: Nadelschnittholz
UNI EN 338	Legno strutturale - Classi di resistenza
UNI EN 385	Legno strutturale con giunti a dita - Requisiti prestazionali e requisiti minimi di produzione
UNI EN 1995-1-1/2	Eurocodice 5 - Progettazione delle strutture di legno Parte 1-1: Regole generali e regole per edifici Parte 1-2: Progettazione strutturale contro l' incendio
UNI EN 13501-1	Classificazione al fuoco dei prodotti da costruzione e componenti edilizi Parte 1: Classificazione utilizzante i risultati delle prove di reazione al fuoco

Denominazione: Aggiornamento: Fonte: Elaborazione: kvh 01.09.2010 Holzforschung Austria HFA, NEU

Legno massiccio da costruzione con giunti longitudinali a pettine

Proprietà meccaniche

_ in conformità alla UNI EN 338

	Conif	fere										
Class di resistenza	C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50
		(S7 Ta, Lä)*	(S7 Fi, Ki)*			(S10)*		(S13)*				
ρ _k [kg/m³]	290	310	320	330	340	350	370	380	400	420	440	460
f _{m,k} [N/mm ²]	14	16	18	20	22	24	27	30	35	40	45	50
f _{t,0,k} [N/mm ²]	8	10	11	12	13	14	16	18	21	24	27	30
f _{t,90,k} [N/mm ²]	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
f _{c,0,k} [N/mm ²]	16	17	18	19	20	21	22	23	25	26	27	29
f _{c,90,k} [N/mm ²]	2,0	2,2	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2
f _{v,k} [N/mm ²]	3,0	3,2	3,4	3,6	3,8	4,0	4,0	4,0	4,0	4,0	4,0	4,0
E _{0,mean} [N/mm ²]	7000	8000	9000	9500	10000	11000	11500	12000	13000	14000	15000	16000
E _{90,mean} [N/mm ²]	230	270	300	320	330	370	380	400	430	470	500	530
E _{0,05} [N/mm ²]	4700	5400	6000	6400	6700	7400	7700	8000	8700	9400	10000	10700
Gmean [N/mm ²]	440	500	560	590	630	690	720	750	810	880	940	1000

^{* ...} classi corrispondenti secondo ÖNORM DIN 4074-1

Tab. 1: Valori caratteristici del legno di conifera

	Latifoglie					
Classi di resistenza	D30	D35	D40	D50	D60	D70
ρ _k [kg/m³]	530	540	550	620	700	900
f _{m,k} [N/mm ²]	30	35	40	50	60	70
f _{t,0,k} [N/mm ²]	18	21	24	30	36	42
f _{t,90,k} [N/mm ²]	0,6	0,6	0,6	0,6	0,6	0,6
f _{c,0,k} [N/mm ²]	23	25	26	29	32	34
f _{c,90,k} [N/mm ²]	8,0	8,1	8,3	9,3	10,5	13,5
f _{v,k} [N/mm ²]	4,0	4,0	4,0	4,0	4,5	5,0
E _{0,mean} [N/mm ²]	11000	12000	13000	14000	17000	20000
E90,mean [N/mm ²]	730	800	860	930	1130	1330
E _{0,05} [N/mm ²]	9200	10100	10900	11800	14300	16800
G _{mean} [N/mm ²]	690	750	810	880	1060	1250

Tab. 2: Valori caratteristici del legno di latifoglie

I valori di resistenza caratteristici sono riferiti nel caso della flessione a un' altezza e nel caso della trazione nel senso della fibratura a una larghezza di 150 mm, nel caso della resistenza al taglio per trazione perpendicolarmente alla fibratura a una dimensione del campione di 45 mm x 180 mm x 70 mm, e nel caso delle resistenza al taglio a un volume uniformemente sollecitato di 0,0005 m3. Un sistema di classi di resistenza è riportato in Tab. 1 e Tab. 2. Questi valori devono essere modificati secondo la UNI EN 1995-1-1 in base alla classe di servizio e alla durata di applicazione del carico (k_{mod}, k_{def}).

Proprietà fisiche

 secondo " Katalog für wärmeschutztechnische Rechenwerte von Baustoffen und Bauteilen", Österreichisches Normungsinstitut (2001)

Legno e compensato					
 ρ [kg/m³]	400	500	600	700	800
λ [W/mK]	0,11	0,13	0,15	0,17	0,20
c [kJ/kgK]	2,5	2,5	2,5	2,5	2,5

Comportamento al fuoco

_ in conformità a UNI EN 1995-1-2

	Legno	Legno	Legno
	Conifere e faggio	Latifoglie	Latifoglie
	$\rho_k \ge 290 \text{ kg/m}^3$	$\rho_k \ge 290 \text{ kg/m}^3$	$\rho_k \! \geq 450 \; kg/m^3$
Velocità di carbonizzazione β_0	0,65 mm/min	0,65 mm/min	0,50 mm/min
Velocità di carbonizzazione β _n	0,80 mm/min	0,70 mm/min	0,55 mm/min

Nota: Per il legno massiccio di latifoglie con ρ_k fra 290 e 450 kg/m³ è consentita l'interpolazione lineare.

Denominazione:
Aggiornamento:
Fonte:
Elaborazione:

kvh 01.09.2010 Holzforschung Austria HFA, NEU

Legno massiccio da costruzione con giunti longitudinali a pettine

Proprietà ecologiche

_ in conformità al documento " Ökologische Kennwerte von Holz und Holzwerkstoffen in Österreich", Österreichisches Institut für Baubiologie und -ökologie GmbH (2002)

Valutazione:

Vale in generale la valutazione per il legno massiccio da costruzione. Per il legno massiccio da costruzione giuntato a pettine e impregnato non esistono dati specifici per quanto riguarda le proprietà ecologiche. In virtù delle ulteriori lavorazioni questo materiale presenta in ogni caso un potenziale superiore al legno massiccio da costruzione.

Categorie di impatto	Abete rosso	Larice	ı
Riferite: a tonnellata secca	grezzo da	grezzo da	
	segatrice, essiccato	segatrice, essiccato	
	all' aria	all' aria	
Risorse abiotiche [g Sb eq]	145	182	
Potenziale riscaldamento globale [kg CO ₂ eq]*	-775	-922	
Potenziale riscaldamento globale [kg CO ₂ eq]	20	26	
Fotosmog [g C ₂ H ₂]	60	57	
Acidificazione [g SO ₂ eq]	144	184	
Sovrafertilizzazione [g PO4 eq]	17	22	
PEC non rinnovabili [MJ]	308	389	
PEC rinnovabili [MJ]	8740	12853	

^{* ...} tenendo conto dell'immagazzinamento di carbonio nel legno

Categorie di impatto Riferite: a tonnellata secca	Abete rosso non piallato, essiccato artificial-	Larice non piallato, essiccato artificial-
	mente	mente
Risorse abiotiche [g Sb eq]	447	496
Potenziale riscaldamento globale [kg CO ₂ eq]*	-728	-944
Potenziale riscaldamento globale [kg CO ₂ eq]	68	74
Fotosmog [g C ₂ H ₂]	71	142
Acidificazione [g SO ₂ eq]	344	787
Sovrafertilizzazione [g PO4 eq]	32	107
PEC non rinnovabili [MJ]	1012	1038
PEC rinnovabili [MJ]	9293	16604

^{* ...} tenendo conto dell'immagazzinamento di carbonio nel legno

Categorie di impatto Riferite: a tonnellata secca	Abete rosso, piallato, essiccato artificial- mente	Larice piallato, essiccato artificial- mente
Risorse abiotiche [g Sb eq]	628	721
Potenziale riscaldamento globale [kg CO ₂ eq]*	-701	-911
Potenziale riscaldamento globale [kg CO ₂ eq]	95	107
Fotosmog [g C ₂ H ₂]	120	211
Acidificazione [g SO ₂ eq]	649	1221
Sovrafertilizzazione [g PO4 eq]	70	162
PEC non rinnovabili [MJ]	1381	1483
PEC rinnovabili [MJ]	12125	20676

^{* ...} tenendo conto dell'immagazzinamento di carbonio nel legno

Altro

 Legno da costruzione giuntato a pettine
 Le giunzioni a pettine devono essere realizzate e marcate in conformità a UNI EN 385.

I legno da costruzione impregnato
 La protezione chimica preventiva del legno deve essere eseguita e marcata in conformità a ÖNORM B 3802-2. La norma prescrive sostanze preservanti per il legno accompagnate da un certificato di riconoscimento della associazione competente (l' elenco dei prodotti di protezione del legno approvati in Austria può essere scaricato dal sito

http://www.holzforschung.at)