# Laboratorio di Progettazione 3M prof. Giovanni Longobardi

# DIMENSIONAMENTO DEGLI IMPIANTI DI CLIMATIZZAZIONE prof. Merco Frescerolo

Università degli Studi di Roma Tre Facoltà di Architettura A.A. 2010-2011

# PARAMETRI DA CONTROLLARE PER IL COMFORT TERMOIGROMETRICO

## Temperatura dell'aria

Inverno 20-22°C Estate 24-26°C

#### **Umidità relativa**

Inverno 35-65% Estate 45-55%

## Temperatura media radiante

#### Velocità dell'aria

10-20 cm/sec a livello degli occupanti

#### Purezza dell'aria

Sono dati dalla normativa i requisiti di ricambi di volume di aria necessari al variare della destinazione d'uso dell'ambiente, o il numero di mc di aria di rinnovo da fornire per ogni occupante (per ogni ambiente si deve fornire una portata di aria di rinnovo pari al massimo tra i due valori)

# Impianti di climatizzazione

Le tipologie impiantistiche si possono classificare sulla base dei parametri che possono controllare, e delle modalità adottate per controllarli.

Esistono infatti tipologie impiantistiche che consentono di controllare solo la temperatura da mantenere in ambiente, altre che permettono di controllare anche la umidità relativa e la purezza dell'aria.

Queste ultime sono le tipologie che prevedono di trattare aria (prelevata dall'esterno e/o parzialmente ricircolata) e successivamente immetterla in ambiente in modo da ottenere i valori desiderati dei parametri termofisici dell'ambiente interno.

Gli impianti che prevedono il trattamento di aria (esterna e/o parzialmente ricircolata), e pertanto consentono il controllo dell'umidità relativa e della purezza, sono:

• Sistemi a tutt'aria

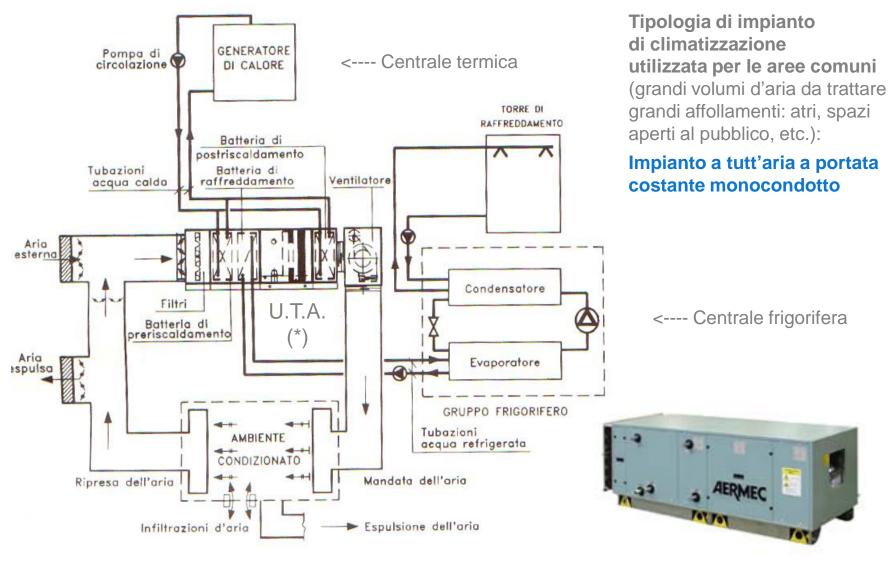
Aria primaria (controlla T, UR e purezza dell'aria)

Sistemi misti aria-acqua

Ventilconvettori + aria primaria (controlla UR e purezza dell'aria)

Pannelli radianti + aria primaria (controlla UR e purezza dell'aria)

Le tipologie impiantistiche che invece non prevedono il trattamento dell'aria (esterna o parzialmente ricircolata), e attraverso le quali non si può controllare l'umidità relativa, sono:


• Sistemi ad acqua (controllano solo T)

Radiatori

Pannelli radianti

Ventilconvettori

Sistemi autonomi (split-multisplit)

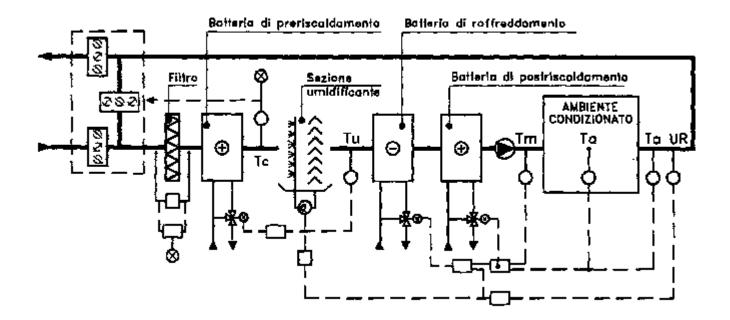


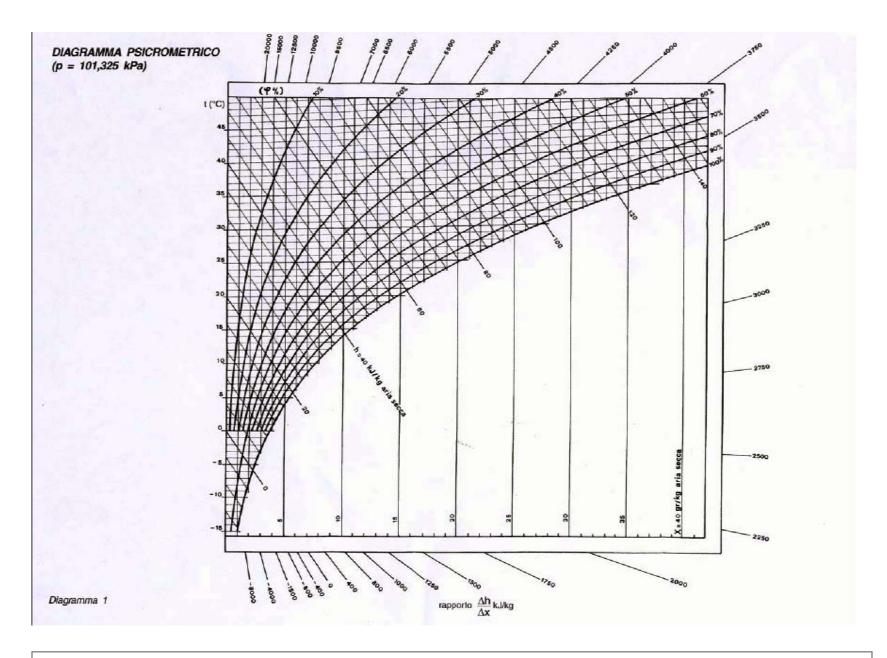
Impianto a tutt'aria.

(\*) Unità di Trattamento dell'Aria

#### UNITA' DI TRATTAMENTO DELL'ARIA

# I trattamenti cui si può sottoporre l'aria umida nella UTA sono:


Filtrazione


Riscaldamento

Raffreddamento (con eventuale deumidificazione)

Umidificazione

Post-riscaldamento





Laboratorio di Progettazione 3M - prof. Giovanni Longobardi Modulo di Fisica Tecnica - prof. Marco Frascarolo

## Diagramma psicrometrico

#### Umidità associata x

rapporto tra la massa di vapor d'acqua  $m_w$  contenuta in un miscuglio e la restante massa di aria secca  $m_a$ 

## Umidità relativa $\varphi$

rapporto tra la massa di vapore m<sub>w</sub> presente in un certo volume di miscuglio di aria umida e la massa di vapore m<sub>s</sub> che sarebbe stato presente nello stesso volume in condizioni di saturazione

#### Trasformazioni dell'aria umida

Riscaldamento

Raffreddamento (con eventuale deumidificazione)

Umidificazione

# Calcolo dei carichi termici finalizzato al dimensionamento degli impianti di riscaldamento e climatizzazione

#### Caso invernale

Si approssima come <u>regime stazionario</u>: ∆T costante pari a 20°C (T esterna = 0°C – T interna = 20\*C)

Il calore non viene immagazzinato e restituito dalle masse (muri, solai, etc.)

La massa delle pareti e dei solai non influenza il fenomeno dello scambio termico: l'unico fattore da considerare è la trasmittanza

L'irraggiamento solare non viene inserito nel bilancio termico e quindi non deve essere considerata l'esposizione delle superfici che delimitano l'edificio

#### Caso estivo

Regime variabile:  $\Delta T$  variabile

Il calore viene immagazzinato e restituito con un certo ritardo dalle masse (muri, solai, etc.)

La massa delle pareti e dei solai influenza il fenomeno dello scambio termico tramite l'accumulo, lo smorzamento ed il tempo di ritardo

L'irraggiamento solare viene inserito e quindi deve essere considerata l'esposizione delle superfici che delimitano l'edificio

# CASO INVERNALE - Calcolo approssimativo dei carichi termici

(finalizzato al dimensionamento della centrale termica e della centrale di trattamento dell'aria)

Q totale = Q involucro + Q ventilazione (+ Q carichi interni + Q irraggiamento vetrate )

**Q** <sub>involucro</sub> = Σ<sub>i</sub> H<sub>i</sub> x S<sub>i</sub> x Δ T (trascuriamo per semplicità il contributo dei ponti termici e della dispersione verso il terreno e gli eventuali locali non riscaldati)

dove  $\mathbf{H_i} = 1 / (1/h_i + 1/h_e + \Sigma_i s_i / \lambda_i)$  è la trasmittanza della superficie i-esima

1/h<sub>i</sub> + 1/h<sub>e</sub> è la resistenza termica sulle superfici limite della parete e vale 0,22 con vento normale e schermatura dall'irraggiamento solare diretto

Si è l'area della superficie disperdente (i-esima)

∆ T=20°C è la differenza di temperatura interno-esterno invernale a Roma

 $\boldsymbol{s}_{i}$  è lo spessore dello strato di materiale j

λ è la conduttività del materiale j e rappresenta la potenza termica trasmessa da un'unità di area di un materiale dello spessore di 1 metro per una differenza di T pari a 1°.

 $Q_{ventilazione}$  è l'energia necessaria per portare l'aria esterna (in quantità necessaria a garantire lo standard di purezza dell'aria previsto) dalla temperatura esterna (a Roma 0°C) alla temperatura di progetto interna (20°C). Il  $\Delta T$  tra 20° e la temperatura di immissione (28-30°) serve per compensare le dispersioni e quindi è implicitamente contenuto nel termine  $Q_{involucro}$ 

**Q** carichi interni (persone, lampade, macchinari) e **Q** irraggiamento vetrate nel caso invernale normalmente non vengono computati, perché di segno contrario rispetto a Q involucro (la caldaia deve essere dimensionata sulle condizioni più critiche e quindi in assenza di apporti gratuiti di calore)

#### Densità e Conduttività dei Materiali Isolanti.

Tabella per il calcolo delle dispersioni termiche dall'involucro attraverso le superfici opache (segue)

| Materiale      | Tipo            | ρ [kg/m³] | λ [W/mK] |
|----------------|-----------------|-----------|----------|
| Lana di vetro  | feltri          | 19        | 0,050    |
|                | 1 997 III [1/ ] | 22        | 0,046    |
|                |                 | 55        | 0,041    |
|                | pannelli        | 22        | 0,046    |
|                |                 | 60        | 0,040    |
| Lana di roccia | coppelle        | 60        | 0,039    |
|                | feltri          | 80        | 0,047    |
|                |                 | 120       | 0,044    |
|                | pannelli        | 60        | 0,044    |
|                |                 | 120       | 0,041    |
|                | coppelle        | 100       | 0,041    |

| Polietilene PEF                    | tubi     | 30             | 0,040                   |
|------------------------------------|----------|----------------|-------------------------|
| Poliuretano PUR espanso rigido     | coppelle | 15<br>20<br>40 | 0,040<br>0,039<br>0,038 |
| Poliuretano PUR espanso flessibile | coppelle | 15<br>30       | 0,040<br>0,039          |
| Poliuretano PUR espanso in situ    |          | 30             | 0,045                   |
| Esastomeri espansi FEF             |          | 55<br>70       | 0,040<br>0,040          |
| Resine fenoliche FF espanse        | coppelle | 30             | 0,038                   |
| Polistirene PSE espanso            | coppelle | 20<br>30       | 0,045<br>0,045          |
| Sughero                            |          | 100            | 0,065                   |
| Vetro cellulare CG                 |          | 130            | 0,060                   |
| Cotone                             |          |                | 0,080                   |
| Calcio silicato CS                 |          | 250            | 0,065                   |

| Materiale                                      | Densità<br>ρ [kg/m3] | Permeabilità<br>δ·10 <sup>12</sup> [kg/msPa] | Conduttività<br>λ [W/mK] |  |
|------------------------------------------------|----------------------|----------------------------------------------|--------------------------|--|
| Laterizi: mattoni pieni, forati, leggeri       | 600<br>800           | 18-36                                        | 0,25<br>0,30             |  |
|                                                | 1.000                |                                              | 0,36                     |  |
|                                                | 1.200                |                                              | 0,43                     |  |
|                                                | 1.400                |                                              | 0,50                     |  |
|                                                | 1.600                |                                              | 0,59                     |  |
|                                                | 1.800                |                                              | 0,72                     |  |
|                                                | 2.000                |                                              | 0,90                     |  |
| Legno di abete                                 | 450                  | 4,5                                          | 0,12                     |  |
| Legno di pino                                  | 550                  | 4,5                                          | 0,15                     |  |
| Legno di acero                                 | 715                  | 4,5                                          | 0,18                     |  |
| Legno di quercia                               | 850                  | 4,5                                          | 0,22                     |  |
| Mastici per tenute                             | 1.000-1.650          | -                                            | 0,04                     |  |
| Asfalto                                        | 2.100                | 0                                            | 0,70                     |  |
| Asfalto con sabbia                             | 2.300                |                                              | 1,15                     |  |
| Bitumi                                         | 1.200                | 0                                            | 0,17                     |  |
| Bitumi con sabbia                              | 1.300                | 0                                            | 0,26                     |  |
| Cartone catramato                              | 1.600                |                                              | 0,50                     |  |
| Fogli di materiale sintetico                   | 1.100                | 0,01-0,14                                    | 0,23                     |  |
| Argille espanse in granuli da 3 a 25 mm        | 280                  | -                                            | 0,09                     |  |
|                                                | 330                  |                                              | 0,10                     |  |
|                                                | 450                  |                                              | 0,12                     |  |
| Fibre di cellulosa                             | 32                   | -                                            | 0,058                    |  |
| Perliti espanse in granuli da 0,1 a 2,3 mm     | 100                  | -                                            | 0,066                    |  |
| Polistiroli espansi in granuli                 | 15                   | -                                            | 0,054                    |  |
| Pomici naturali                                | 400                  | -                                            | 0,08                     |  |
| Scorie espanse                                 | 600                  |                                              | 0,13                     |  |
| Vermiculiti espanse in granuli da 0,1 a 12 mm  | 80                   | _                                            | 0,077                    |  |
|                                                | 120                  |                                              | 0,082                    |  |
| Ciottoli e pietre frantumate                   | 1.500                |                                              | 0,7                      |  |
| Ghiaia grossa senza argilla                    | 1.700                | -                                            | 1,20                     |  |
| Sabbia secca                                   | 1.700                | 140                                          | 0,6                      |  |
| Cloruro di polivinile espanso rigido in lastre | 30                   | 0,5-1                                        | 0,039                    |  |
|                                                | 40                   |                                              | 0.041                    |  |
| Polietilene espanso non reticolato             | 30                   | 0,5-1                                        | 0,050                    |  |
|                                                | 50                   |                                              | 0,060                    |  |
| Polietilene espanso reticolato                 | 33                   | 0,5-1                                        | 0,048                    |  |
|                                                | 50                   | -,01                                         | 0,058                    |  |
| Polistirene espanso sinterizzato               | 10                   | 3,6-9                                        | 0,056                    |  |
| - Carrier Copiano Santochia                    | 15                   | 2,5-6                                        | 0,047                    |  |
|                                                | 20                   | 1,8-4,5                                      | 0,044                    |  |
|                                                | 25                   | 1,8-4,5                                      | 0,042                    |  |
| Polistirene espanso per termocompressione      | 20                   | 1,0-1,0                                      | 0,042                    |  |
| ousaitette espanso per termocompressione       | 25                   | , TO .                                       | 0,039                    |  |
|                                                | 30                   |                                              |                          |  |
| Polistirono ospanos estrues con rella          | 30                   |                                              | 0,039                    |  |
| Polistirene espanso estruso con pelle          | 35                   | -                                            | 0,036                    |  |
|                                                | 35                   |                                              | 0,035                    |  |

Densità e conduttività dei materiali da costruzione (segue)

| Materiale                                                                       | Densità<br>ρ [kg/m3]                | Permeabilità<br>δ·10 <sup>12</sup> [kg/msPa] | Conduttività<br>λ [W/mK]                  |  |
|---------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------|-------------------------------------------|--|
| - Calcestruzzi a struttura aperta<br>di argilla espansa                         | 500<br>600<br>700<br>800            | 18-36                                        | 0,16<br>0,18<br>0,21<br>0,24              |  |
|                                                                                 | 900<br>1.000                        |                                              | 0,27<br>0,31                              |  |
| Calcestruzzi cellulare da autoclave                                             | 400<br>500<br>600<br>700<br>800     | 18-36                                        | 0,15<br>0,17<br>0,19<br>0,22<br>0,25      |  |
| Calcestruzzi di inerti espansi di<br>origine vulcanica                          | 1.000<br>1.200<br>1.400             | 18-36                                        | 0,38<br>0,47<br>0,58                      |  |
| Calcestruzzi di perlite o vermiculite                                           | 250<br>400                          | 18-36                                        | 0,13<br>0,15                              |  |
| Carta e cartone                                                                 | 1.000                               | 1-2                                          | 0,16                                      |  |
| Cartone bitumato                                                                | 1.100                               | 0,06-0,09                                    | 0,23                                      |  |
| Cartongesso in lastre                                                           | 900                                 | 23                                           | 0,21                                      |  |
| Cartone ondulato                                                                | 100                                 | -                                            | 0,065                                     |  |
| Fibre di vetro, pannelli rigidi                                                 | 100                                 | 150                                          | 0,038                                     |  |
| Fibre minerali, feltri resinati                                                 | 30                                  | 150                                          | 0,045                                     |  |
| Fibre minerali, pannelli semi rigidi                                            | 35<br>40<br>55                      | 150                                          | 0,044<br>0,042<br>0,040                   |  |
| Fibre minerali, pannelli rigidi                                                 | 80<br>100<br>125                    | 150                                          | 0,039<br>0,038<br>0,038                   |  |
| Fibre minerali, pannelli a fibre orientate<br>Fibre minerali, feltri trapuntati | 100<br>60<br>80<br>100              | 150<br>150                                   | 0,048<br>0,044<br>0,044<br>0,045          |  |
| Fibre minerali, feltri da loppe di altoforno                                    | 40                                  | 150                                          | 0,054                                     |  |
| Fibre minerali, pannelli da loppe di altoforno                                  | 40<br>60<br>80<br>100<br>150        | 150                                          | 0,054<br>0,048<br>0,046<br>0,046<br>0,048 |  |
| Malte di gesso per intonaci                                                     | 600<br>750<br>900<br>1.000<br>1.200 | 18                                           | 0,29<br>0,35<br>0,41<br>0,47<br>0,58      |  |
| Intonaci di gesso puro                                                          | 1.200                               | 18                                           | 0,35                                      |  |
| Intonaci di calce e gesso                                                       | 1.400                               | 18                                           | 0,70                                      |  |
| Malte di calce o di calce e cemento                                             | 1.800                               | 5-12                                         | 0,90                                      |  |
| Malte di cemento                                                                | 2,000                               | 5-12                                         | 1,40                                      |  |

| Materiale                               | Densità<br>ρ [kg/m3] | Permeabilità<br>δ·10 <sup>12</sup> [kg/msPa] | Conduttivita<br>λ [W/mK] |
|-----------------------------------------|----------------------|----------------------------------------------|--------------------------|
| Polistirene espanso estruso senza pelle | 30                   | 0,6-2,2                                      | 0,041                    |
|                                         | 50                   | 77000 121355-                                | 0,034                    |
| Poliuretani in lastre da blocchi        | 25                   | 1-2                                          | 0,034                    |
|                                         | 32                   | 35.00                                        | 0,032                    |
|                                         | 40                   |                                              | 0,032                    |
|                                         | 50                   |                                              | 0,032                    |
| Polisocianurati in lastre da blocchi    | 32                   | 1-2                                          | 0,032                    |
|                                         | 40                   |                                              | 0,032                    |
| Poliuretani espansi in situ             | 37                   | 1,8-6                                        | 0,035                    |
| Resine fenoliche in lastre              | 35                   | 3,6-6                                        | 0,041                    |
|                                         | 60                   |                                              | 0,044                    |
|                                         | 80                   |                                              | 0,046                    |
| Resine ureiche espanse in situ          | 8 .                  | 30-140                                       | 0,057                    |
|                                         | 12                   |                                              | 0,054                    |
|                                         | 15                   |                                              | 0,051                    |
|                                         | 30                   | 1.10                                         | 0,048                    |
| Piastrelle di porcellana                | 2.300                |                                              | 1,0                      |
| Vetro cellulare espanso                 | 130                  | 0                                            | 0,055                    |
| Total Continue Companies                | 150                  | 1520                                         | 0,060                    |
|                                         | 180                  |                                              | 0,066                    |
| Vetro da finestre                       | 2.500                | 0                                            | 1,0                      |
| Celluloide                              | 1.350                | 70 -                                         | 0,35                     |
| Policarbonato PC                        | 1.150                |                                              | 0,23                     |
| Politetrafluoroetilene PTFE             | 2.200                |                                              | 0,24                     |
| Polietilene PE                          | 950                  |                                              | 0,35                     |
| Policloruro di vinile PVC               | 1.400                |                                              | 0,16                     |
| Polistirene PS                          | 1.100                |                                              | 0,17                     |
| Resine epossidiche                      | 1.200                | 2                                            | 0,20                     |
| Resine poliestere                       | 2.000                | -                                            | 0,50                     |
| Acciaio                                 | 7.800                |                                              | 52                       |
| Acciaio inox                            | 8.000                | _                                            | 17                       |
| Argento                                 | 10.500               |                                              | 420                      |
| Alluminio                               | 2.700                | _                                            | 220                      |
| Leghe di alluminio                      | 2.800                |                                              | 160                      |
| Bronzo                                  | 8.700                | _                                            | 65                       |
| Ferro                                   | 7.870                |                                              | 80                       |
| Ghisa                                   | 7.200                | -                                            | 50                       |
| Nichel                                  | 8.800                | (7)                                          | 65                       |
| Ottone                                  | 8.400                | _                                            | 110                      |
| Piombo                                  | 11.300               |                                              | 35                       |
| Rame                                    | 8,900                |                                              | 380                      |
| Zinco                                   | 7.100                |                                              | 110                      |
| Pannelli a base di perlite espansa      | 190                  | 26                                           | 0,071                    |
| Pannelli di fibre di legno              | 800                  | 2,6                                          | 0,071                    |
| r annem in note in tegrio               | 900                  | 2,0                                          | 0,14                     |
|                                         | 1.000                | 100                                          | 0,18                     |

| Materiale                               | Densità<br>ρ [kg/m3] | Permeabilità<br>δ·10 <sup>12</sup> [kg/msPa] | Conduttività λ [W/mK] |
|-----------------------------------------|----------------------|----------------------------------------------|-----------------------|
| Pannelli di lana di legno               | 300                  | 36-90                                        | 0,085                 |
|                                         | 400                  | CHARLES TO SERVICE STREET                    | 0,097                 |
|                                         | 500                  | 7                                            | 0,11                  |
| Pannelli di spaccato di legno           | 400                  |                                              | 0,12                  |
|                                         | 500                  |                                              | 0,14                  |
|                                         | 600                  | TR WITH THE                                  | 0,16                  |
| Pannelli di trucioli di legno pressati  | 500                  | 1,8-3,6                                      | 0,10                  |
|                                         | 700                  |                                              | 0,15                  |
| Pannelli di trucioli di legno estrusi   | 700                  | 9                                            | 0,17                  |
| Pannelli di sughero espanso puro        | 130                  | 6,7-10                                       | 0,045                 |
| Pannelli di sughero espanso con leganti | 90                   | 6,7-10                                       | 0,043                 |
|                                         | 130                  | 4-21                                         | 0,045                 |
|                                         | 200                  | 4-21                                         | 0,052                 |
| Ardesia                                 | 2.700                |                                              | 2,0                   |
| Basalto                                 | 2.800                |                                              | 3,5                   |
| Calcare                                 | 2.100                | 1-2                                          | 1,6                   |
|                                         | 2.700                |                                              | 2,9                   |
|                                         | 2.800                | Control Mark and a                           | 3,5                   |
| Dolomite                                | 2.700                |                                              | 1,8                   |
| Granito                                 | 2.500                |                                              | 3,2                   |
|                                         | 3.000                |                                              | 4,1                   |
| Lava                                    | 2.200                | -                                            | 2,9                   |
| Marmo                                   | 2.700                | -                                            | 3,0                   |
| Porfido                                 | 2.200                |                                              | 2,9                   |
| Tufo                                    | 1.500                | romani ištogani                              | 0,63                  |
|                                         | 2.300                | - I V Sudden                                 | 1,7                   |

Densità e conduttività dei materiali da costruzione (segue)

Tabella per il calcolo delle dispersioni termiche dall'involucro attraverso le superfici vetrate

| Trasmittanza | delle | Superfici     | Vetrate. |
|--------------|-------|---------------|----------|
|              |       | 2000 C F (90) |          |

|         |              |            |             |                                         | TELAIO |       |                         |             |                   |                                                                |      |            |                              |
|---------|--------------|------------|-------------|-----------------------------------------|--------|-------|-------------------------|-------------|-------------------|----------------------------------------------------------------|------|------------|------------------------------|
|         |              | i li e i i |             | legno o legno-Al<br>spessore del telaio |        |       | plastica<br>profili PVC |             |                   | metallo CON taglio<br>termico distanza tra<br>le sezioni di Al |      |            | metallo<br>SENZA<br>taglio t |
|         |              |            |             | 130 mm                                  | 70 mm  | 30 mm | 3<br>camere             | 2<br>camere | 1<br>camere       | 14 mm                                                          | 6 mm | 2 mm       |                              |
|         |              |            |             | 1                                       |        |       | La contraction          | Uf, W       | /m <sup>2</sup> K |                                                                |      | 50) = - 10 |                              |
| vetro   | tipo         | s<br>mm    | Ug<br>W/m²K | 1,2                                     | 1,7    | 2,3   | 1,8                     | 2,0         | 2,4               | 2,6                                                            | 3,2  | 3,8        | 7                            |
| singolo | chiaro       | 6          | 5,7         | 4,3                                     | 4,5    | 4,6   | 4,6                     | 4,6         | 4,7               | 4,8                                                            | 5,0  | 5,2        | 6,1                          |
|         | chiaro+aria  | 4-6-4      | 3,3         | 2,7                                     | 2,9    | 3,0   | 2,9                     | 3,0         | 3,1               | 3,2                                                            | 3,4  | 3,6        | 4,5                          |
|         |              | 4-12-4     | 2,9         | 2,5                                     | 2,6    | 2,8   | 2,7                     | 2,7         | 2,8               | 3,0                                                            | 3,1  | 3,3        | 4,2                          |
|         | chiaro+argon | 4-6-4      | 3,0         | 2,6                                     | 2,7    | 2,9   | 2,8                     | 2,8         | 2,9               | 3,1                                                            | 3,2  | 3,4        | 4,3                          |
|         |              | 4-12-4     | 2,7         | 2,3                                     | 2,5    | 2,6   | 2,6                     | 2,6         | 2,7               | 2,8                                                            | 3,0  | 3,2        | 4,1                          |
|         | b.e+aria     | 4-6-4      | 2,7         | 2,4                                     | 2,5    | 2,7   | 2,6                     | 2,6         | 2,7               | 2,9                                                            | 3,0  | 3,2        | 4,1                          |
|         |              | 4-12-4     | 2,0         | 1,9                                     | 2,1    | 2,2   | 2,1                     | 2,2         | 2,3               | 2,4                                                            | 2,6  | 2,7        | 3,7                          |
|         | b.e.+argon   | 4-6-4      | 2,3         | 2,1                                     | 2,2    | 2,4   | 2,3                     | 2,4         | 2,5               | 2,6                                                            | 2,8  | 2,9        | 3,9                          |
|         |              | 4-12-4     | 1,7         | 1,7                                     | 1,9    | 2,0   | 1,9                     | 2,0         | 2,1               | 2,2                                                            | 2,4  | 2,6        | 3,5                          |
| triplo  | chiaro+aria  | 4-6-4-6-4  | 2,3         | 2,1                                     | 2,2    | 2,4   | 2,3                     | 2,3         | 2,4               | 2,6                                                            | 2,7  | 2,9        | 3,8                          |
| •       | chiaro+argon | 4-6-4-6-4  | 2,1         | 1,9                                     | 2,0    | 2,2   | 2,1                     | 2,2         | 2,3               | 2,4                                                            | 2,6  | 2,7        | 3,7                          |
|         | b.e.+aria    | 4-6-4-6-4  |             | 1,7                                     | 1,9    | 2,0   | 1,9                     | 2,0         | 2,1               | 2,2                                                            | 2,4  | 2,6        | 3,5                          |
|         | b.e.+argon   | 4-6-4-6-4  | 1,4         | 1,5                                     | 1,6    | 1,8   | 1,7                     | 1,8         | 1,9               | 2,0                                                            | 2,2  | 2,3        | 3,3                          |

n.b. la tabella fornisce direttamente H per alcune strutture complesse, senza passare attraverso il contributo dei singoli componenti

# Calcolo di Q<sub>ventilazione</sub>

Q <sub>ventilazione</sub> è la somma di due contributi:

Q <sub>v raffreddamento</sub>: è l'energia necessaria per portare l'aria esterna (in quantità necessaria a garantire lo standard di purezza dell'aria previsto) dalla temperatura esterna (a Roma 34°C) alla temperatura di progetto interna (26°C).

$$Q_{v \text{ raffreddamento}} = c_p \delta G_e (T_e - T_i) (W)$$

(v. caso invernale per ladefinizione dei singoli fattori)  $(T_e-T_i)=34^{\circ}C-26^{\circ}C=8^{\circ}C$ 

Q  $_{v \ deumidificazione}$ : In base alle portate determinate, va computato il carico legato all'alto contenuto igrometrico dell'aria esterna in estate: occorre anche deumidificare, oltre che raffreddare, l'aria che si immette in ambiente. La portata di vapore da sottrarre è pari a  $G_e(x_e-x_i)$ , e il carico termico ad essa associato, cui deve far fronte l'impianto, è pari a

$$Q_{\text{v deumidificazione}} = \delta r G_{\text{e}}(x_{\text{e}} - x_{\text{i}}) + c_{\text{p}} \delta G_{\text{e}}(T_{\text{i}} - T_{\text{R}})$$
 (W)

 $(T_i-T_R)$  si assume pari a 13°C  $x_e-x_i=0.012$  kg vapore/kg aria rè il calore di trasformazione (evaporazione) dell'acqua, pari a circa 2500 kJ/kg

# CASO ESTIVO - Calcolo approssimativo dei carichi termici

(finalizzato al dimensionamento della centrale frigorifera e della centrale di trattamento dell'aria)

**Q** involucro =  $\Sigma_i$  H<sub>i</sub> x S<sub>i</sub> x  $\Delta$  T<sub>eq</sub>

dove  $H_i = 1 / (1/h_i + 1/h_e + \Sigma_j s_j / \lambda_j)$  è la trasmittanza della superficie i-esima

1/h<sub>i</sub> + 1/h<sub>e</sub> = 0,22 con vento normale e schermatura dall'irraggiamento solare diretto

S<sub>i</sub> è l'area della superficie i-esima

∆ T<sub>eq</sub> è la differenza di temperatura equivalente: consente di trattare il regime variabile come fosse permanente (vd. diapositive seguenti, con riferimento all'ora più sfavorevole)

s<sub>i</sub> è lo spessore dello strato di materiale j

λ è la conduttività del materiale j

**Q ventilazione** è l'energia necessaria per portare l'aria esterna (in quantità necessaria a garantire lo standard di purezza dell'aria previsto) dalla temperatura esterna (a Roma 34°C) alla temperatura di progetto interna (25°C). Il  $\Delta T$  tra 25° e la temperatura di immissione (16°) è invece contemplato nella voce Q involucro.

Q carichi interni: persone, lampade, macchinari (vedi diapositive seguenti)

**Q irraggiamento vetrate**: potenza entrante dalle superfici vetrate dovuta all'irraggiamento solare

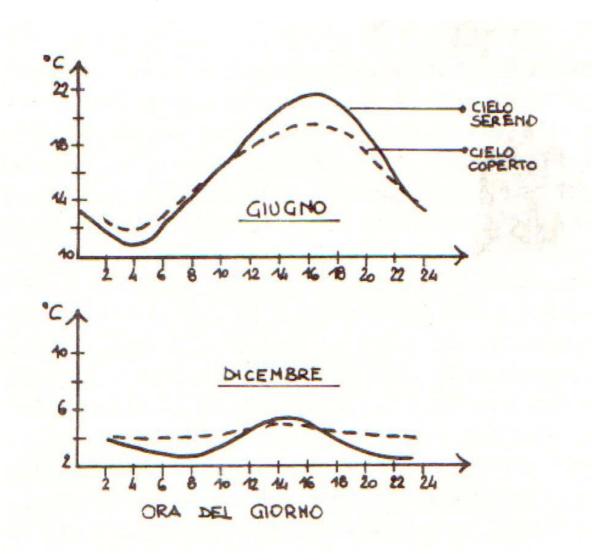
# CASO ESTIVO - Calcolo approssimativo dei carichi termici

(finalizzato al dimensionamento della centrale frigorifera e della centrale di trattamento dell'aria)

Individuazione delle condizioni di progetto – Condizioni di carico massime nel corso dell'anno tipo su cui dimensionare l'impianto

Q involucro, Q ventilazione dipendono dalla temperatura dell'aria esterna, il cui andamento nel corso della giornata dell'anno più calda è riportato nelle slides successive

**Q** carichi interni dipende dalla presenza delle persone e dallo stato di accensione degli apparecchi di illuminazione nel corso della giornata


**Q** irraggiamento vetrate dipende dall'area delle superfici vetrate (computata separatamente per le singole esposizioni), dalle caratteristiche del vetro, dalla posizione del sole, ovvero dalla potenza raggiante incidente sulle superfici verticali ed orizzontali dell'involucro, il cui andamento nel corso della giornata tipo estiva ed invernale è riportato nelle slides successive

In base a considerazioni sulla morfologia dell'edificio e sulla contemporaneità dei suddetti fattori si individua l'ora del 21 Giugno (data presa convenzionalmente per rappresentare le condizioni estive) in cui si prevedono i carichi massimi e si effettuano i calcoli in corrispondenza di quella ora.

# CASO ESTIVO – Andamento della temperatura dell'aria esterna

(finalizzato al dimensionamento della centrale frigorifera e della centrale di trattamento dell'aria)

Stazione climatica: Ciampino (Rm)



#### Tabella per il calcolo dei carichi termici estivi attraverso le superfici vetrate per irraggiamento solare

· Radiazione solare attraverso un vetro piano chiaro (W m² di superficie di finestra compreso l'infisso).

| 22 | n                  | icem   | hre |
|----|--------------------|--------|-----|
| 44 | $\boldsymbol{\nu}$ | ICCIII | DIE |

| Ora    | Latit |    |    |     | Es  | posi | zioni |     |    |     |
|--------|-------|----|----|-----|-----|------|-------|-----|----|-----|
| solare |       | N  | NE | E   | SE  | S    | SC    | 0   | NO | Ori |
| 6      | 30°   | 0  | 0  | (   | ) ( | ) (  | ) (   | 0 0 | 0  |     |
|        | 40°   | 0  | 0  | (   | 0   | ) (  | ) (   | 0 0 | 0  |     |
|        | 45°   | 0  | 0  | (   | ) ( | 0    | ) (   | 0   | 0  |     |
|        | 50°   | 0  | 0  | (   | (   | ) (  | ) (   | 0   | 0  |     |
| 7      | 30°   | 0  | 0  | (   | 0   | ) (  | ) (   | 0   | 0  | (   |
|        | 40°   | 0  | 0  | C   | 0   | 0    | 0     | 0   | 0  | (   |
|        | 45°   | 0  | 0  | 0   | 0   | 0    | 0     | 0   | 0  | (   |
|        | 50°   | 0  | 0  | 0   | 0   | 0    | 0     | 0   | 0  | (   |
| 8      | 30°   | 12 | 31 | 290 | 359 | 201  | 12    | 12  | 12 | 55  |
|        | 40°   | 6  | 22 | 227 | 277 | 160  | 6     | 6   | 6  | 24  |
|        | 45°   | 2  | 10 | 113 | 138 | 80   | 2     | 2   | 2  | 12  |
|        | 50°   | 0  | 0  | 0   | 0   | 0    | 0     | 0   | 0  | C   |
| 9      | 30°   | 28 | 28 | 330 | 494 | 356  | 28    | 28  | 28 | 200 |
|        | 40°   | 19 | 19 | 271 | 422 | 312  | 22    | 19  | 19 | 100 |
|        | 45°   | 14 | 14 | 178 | 276 | 205  | 15    | 14  | 14 | 57  |
|        | 50°   | 9  | 9  | 85  | 129 | 98   | 9     | 9   | 9  | 15  |
| 10     | 30°   | 34 | 34 | 252 | 511 | 448  | 87    | 34  | 34 | 306 |
|        | 40°   | 28 | 28 | 214 | 466 | 422  | 94    | 28  | 28 | 173 |
| 1      | 45°   | 21 | 21 | 180 | 401 | 366  | 86    | 21  | 21 | 116 |
| 1      | 50°   | 15 | 15 | 148 | 337 | 312  | 78    | 15  | 15 | 59  |
| 11     | 30°   | 37 | 37 | 100 | 450 | 501  | 227   | 37  | 37 | 384 |
|        | 40°   | 31 | 31 | 98  | 448 | 499  | 230   | 31  | 31 | 240 |
|        | 45°   | 24 | 24 | 85  | 406 | 455  | 212   | 24  | 24 | 171 |
|        | 50°   | 19 | 19 | 72  | 365 | 413  | 195   | 19  | 19 | 104 |
| 12     | 30°   | 37 | 37 | 37  | 340 | 514  | 340   | 37  | 37 | 413 |
| - 1    | 40°   | 31 | 31 | 31  | 362 | 520  | 362   | 31  | 31 | 267 |
|        | 45°   | 27 | 27 | 27  | 338 | 481  | 338   | 27  | 27 | 197 |
|        | 50°   | 22 | 22 | 22  | 315 | 444  | 315   | 22  | 22 | 126 |
| 13     | 30°   | 37 | 37 | 37  | 227 | 501  | 450   | 100 | 37 | 384 |
|        | 40°   | 31 | 31 | 31  | 230 | 499  | 448   | 98  | 31 | 240 |
|        | 45°   | 27 | 24 | 24  | 212 | 455  | 406   | 85  | 24 | 171 |
|        | 50°   | 19 | 19 | 19  | 195 | 413  | 365   | 72  | 19 | 104 |
| 14     | 30°   | 34 | 34 | 34  | 87  | 448  | 511   | 252 | 34 | 306 |
|        | 40°   | 28 | 28 | 28  | 94  | 422  | 466   | 214 | 28 | 173 |
|        | 45°   | 21 | 21 | 21  | 86  | 366  | 401   | 180 | 21 | 116 |
|        | 50°   | 15 | 15 | 15  | 78  | 312  | 337   | 148 | 15 | 59  |

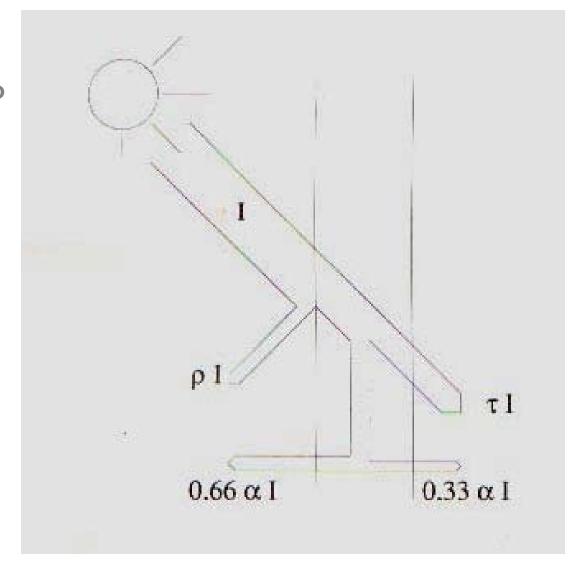
21 Giugno

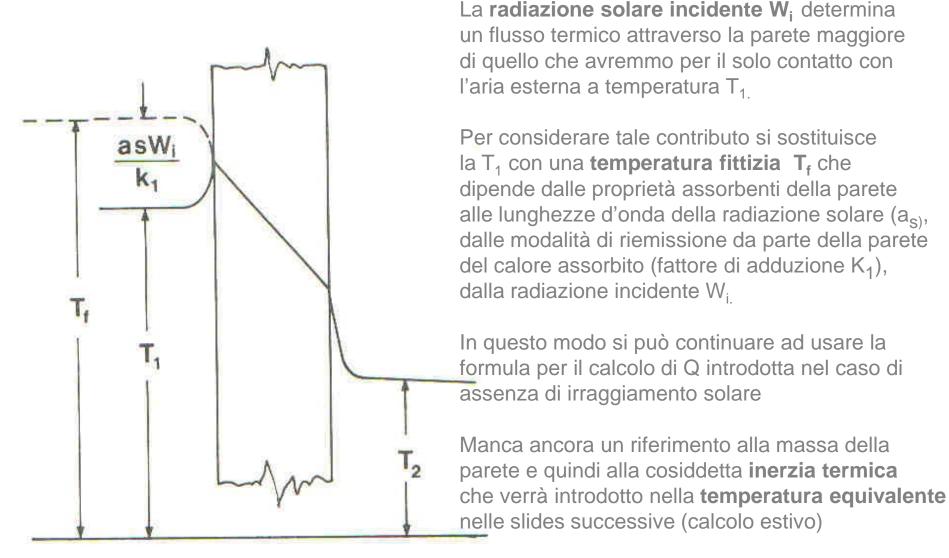
| Ora    | Latit | Esposizio |     |     |     | zioni |      |      |     |     |
|--------|-------|-----------|-----|-----|-----|-------|------|------|-----|-----|
| solare |       | N         | NE  | E   | SE  | S     | SO   | 0    | NO  | Ori |
| 6      | 30°   | 104       | 330 | 340 | 131 | 1:    | 5 1: | 5 1: | 15  | 59  |
|        | 40°   | 101       | 372 | 397 | 160 | 19    | 19   | 19   | 19  | 98  |
|        | 45°   | 98        | 385 | 418 | 180 | 21    | 2    | 21   | 21  | 117 |
|        | 50°   | 91        | 397 | 438 | 201 | 24    | 1 24 | 1 24 | 24  | 138 |
| 7      | 30°   | 91        | 438 | 492 | 236 | 31    | 31   | 31   | 31  | 192 |
|        | 40°   | 63        | 419 | 507 | 277 | 31    | 31   | 31   | 31  | 258 |
|        | 45°   | 50        | 406 | 512 | 299 | 31    | 31   | 31   | 31  | 264 |
|        | 50°   | 37        | 394 | 516 | 321 | 31    | 31   | 31   | 31  | 271 |
| 8      | 30°   | 56        | 409 | 507 | 284 | 37    | 37   | 37   | 37  | 413 |
|        | 40°   | 37        | 352 | 511 | 343 | 37    | 37   | 37   | 37  | 422 |
|        | 45°   | 37        | 324 | 511 | 370 | 43    | 37   | 37   | 37  | 421 |
|        | 50°   | 37        | 295 | 511 | 397 | 50    | 37   | 37   | 37  | 419 |
| 9      | 30°   | 44        | 306 | 450 | 284 | 44    | 44   | 44   | 44  | 568 |
|        | 40°   | 41        | 230 | 448 | 350 | 59    | 41   | 41   | 41  | 564 |
|        | 45°   | 41        | 193 | 437 | 387 | 91    | 41   | 41   | 41  | 555 |
|        | 50°   | 41        | 157 | 428 | 426 | 122   | 41   | 41   | 41  | 545 |
| 10     | 30°   | 44        | 173 | 308 | 230 | 47    | 44   | 44   | 44  | 684 |
|        | 40°   | 44        | 94  | 299 | 312 | 109   | 44   | 44   | 44  | 662 |
| = 1    | 45°   | 44        | 71  | 297 | 351 | 162   | 44   | 44   | 44  | 641 |
|        | 50°   | 44        | 50  | 295 | 391 | 214   | 44   | 44   | 44  | 621 |
| 11     | 30°   | 44        | 59  | 138 | 138 | 59    | 44   | 44   | 44  | 756 |
|        | 40°   | 44        | 44  | 138 | 223 | 138   | 44   | 44   | 44  | 732 |
| 1      | 45°   | 44        | 44  | 134 | 265 | 206   | 58   | 44   | 44  | 704 |
| - 1    | 50°   | 44        | 44  | 129 | 308 | 273   | 72   | 44   | 44  | 675 |
| 12     | 30°   | 44        | 44  | 44  | 53  | 66    | 53   | 44   | 44  | 789 |
|        | 40°   | 44        | 44  | 44  | 107 | 170   | 107  | 44   | 44  | 747 |
| 1      | 45°   | 44        | 44  | 44  | 149 | 231   | 149  | 44   | 44  | 721 |
|        | 50°   | 44        | 44  | 44  | 192 | 293   | 192  | 44   | 44  | 693 |
| 13     | 30°   | 44        | 44  | 44  | 44  | 59    | 138  | 138  | 59  | 756 |
|        | 40°   | 44        | 44  | 44  | 44  | 138   | 223  | 138  | 44  | 732 |
|        | 45°   | 44        | 44  | 44  | 58  | 206   | 266  | 134  | 44  | 704 |
|        | 50°   | 44        | 44  | 44  | 72  | 273   | 308  | 129  | 44  | 675 |
| 14     | 30°   | 44        | 44  | 44  | 44  | 47    | 230  | 308  | 173 | 684 |
|        | 40°   | 44        | 44  | 44  | 44  | 109   | 312  | 299  | 94  | 662 |
|        | 45°   | 44        | 44  | 44  | 44  | 162   | 351  | 298  | 71  | 641 |
|        | 50°   | 44        | 44  | 44  | 44  | 214   | 391  | 295  | 50  | 621 |

Latitudine di Roma: 41° 9' (interpolare 40/45)

#### 22 Dicembre

|    | THE CONTRACT |
|----|--------------|
| 41 | Giugno       |
|    |              |


| Ora<br>solare | Latit | Esposizioni |    |    |    |     |     |     |    |      | Ora    | Latit | Esposizioni |    |    |    |     |     |     |     |     |
|---------------|-------|-------------|----|----|----|-----|-----|-----|----|------|--------|-------|-------------|----|----|----|-----|-----|-----|-----|-----|
|               |       | N           | NE | E  | SE | S   | SO  | 0   | NO | Oriz | solare |       | N           | NE | E  | SE | S   | so  | 0   | NO  | Ori |
| 15            | 30°   | 28          | 28 | 28 | 28 | 356 | 494 | 330 | 28 | 200  | 15     | 30°   | 44          | 44 | 44 | 44 | 44  | 284 | 450 | 306 | 56  |
|               | 40°   | 19          | 19 | 19 | 22 | 312 | 422 | 271 | 19 | 100  |        | 40°   | 41          | 41 | 41 | 41 | 59  | 350 | 448 | 230 | 564 |
|               | 45°   | 14          | 14 | 14 | 15 | 205 | 276 | 178 | 14 | 57   |        | 45°   | 41          | 41 | 41 | 41 | 91  | 387 | 437 | 193 | 555 |
|               | 50°   | 9           | 9  | 9  | 9  | 98  | 129 | 85  | 9  | 15   |        | 50°   | 41          | 41 | 41 | 41 | 122 | 426 | 428 | 157 | 545 |
| 16            | 30°   | 12          | 12 | 12 | 12 | 201 | 359 | 290 | 31 | 59   | 16     | 30°   | 56          | 37 | 37 | 37 | 37  | 284 | 507 | 409 | 413 |
|               | 40°   | 6           | 6  | 6  | 6  | 160 | 277 | 227 | 22 | 24   |        | 40°   | 37          | 37 | 37 | 37 | 37  | 343 | 511 | 352 | 422 |
|               | 45°   | 2           | 2  | 2  | 2  | 80  | 138 | 113 | 10 | 12   |        | 45°   | 37          | 37 | 37 | 37 | 43  | 370 | 511 | 324 | 42  |
|               | 50°   | 0           | 0  | 0  | 0  | 0   | 0   | 0   | 0  | 0    |        | 50°   | 37          | 37 | 37 | 37 | 50  | 397 | 511 | 295 | 419 |
| 17            | 30°   | 0           | 0  | 0  | 0  | 0   | 0   | 0   | 0  | 0    | 17     | 30°   | 91          | 31 | 31 | 31 | 31  | 236 | 492 | 438 | 192 |
|               | 40°   | 0           | 0  | 0  | 0  | 0   | 0   | 0   | 0  | 0    |        | 40°   | 63          | 31 | 31 | 31 | 31  | 277 | 507 | 419 | 258 |
|               | 45°   | 0           | 0  | 0  | 0  | 0   | 0   | 0   | 0  | 0    |        | 45°   | 50          | 31 | 31 | 31 | 31  | 299 | 512 | 406 | 264 |
|               | 50°   | 0           | 0  | 0  | 0  | 0   | 0   | 0   | 0  | 0    |        | 50°   | 37          | 31 | 31 | 31 | 31  | 321 | 516 | 394 | 271 |
| 18            | 30°   | 0           | 0  | 0  | 0  | 0   | 0   | 0   | 0  | 0    | 18     | 30°   | 104         | 15 | 15 | 15 | 15  | 131 | 340 | 330 | 59  |
|               | 40°   | 0           | 0  | 0  | 0  | 0   | 0   | 0   | 0  | 0    |        | 40°   | 100         | 19 | 19 | 19 | 19  | 160 | 397 | 372 | 98  |
|               | 45°   | 0           | 0  | 0  | 0  | 0   | 0   | 0   | 0  | 0    |        | 45°   | 95          | 21 | 21 | 21 | 21  | 180 | 418 | 385 | 117 |
|               | 50°   | 0           | 0  | 0  | 0  | 0   | 0   | 0   | 0  | 0    |        | 50°   | 91          | 24 | 24 | 24 | 24  | 201 | 438 | 397 | 138 |


Correzioni: telaio metallico (non a taglio termico): +17%; foschia: -15%; altitudine: +0,7% (ogni 300 m slm.; punto di rugiada dell'aria esterna: +5% (ogni 4°C + rispetto a 19,5 °C).

La superficie vetrata sottoposta ad irraggiamento solare rappresenta una superficie radiante, da computare come fosse una sorgente di calore interna. Data la massa del vetro non c'è ritardo tra l'onda termica interna ed esterna.

Valori in neretto: massimi mensili. Valori in corsivo: massimi annuali.

Bilancio termico su una superficie vetrata sottoposta ad irraggiamento solare (parete opaca τ=0)





Confronto fra l'andamento reale della temperatura e quello fittizio.