Il Prossimo Giovedì 20 Gennaio 2011 alle ore 18:00
alle  presso la sede dell'ISTITUTO QUASAR
via Nizza, 152 - Roma

si terrà la lecture Cloud Design, in cui saranno presentati
progetti e lavori compiuti anche durante le attività di Tecniche Parametriche
di progettazione 2008-2011. Siete tutti invitati a partecipare, e intervenire!

cloud design
la lecture indaga l'evoluzione dei metodi di progettazione e produzione, che a partire da presupposti e provocazioni tecnologiche conduce alla evoluzione dei profili professionali e umani. Non si tratta, quindi, solo di riconoscere nuove forme di autorialità nel cloud computing per produrre spimes e strutturare gruppi allargati e flessibili di produzione, ma progettare per le nuove forme organizzative, usando flessibilità e negoziazione come forme espressive e il networking sui server di progettazione come strumento operativo.
Per passare dal solipsistico parametric modeling al "parametric being".

Cari ragazzi,
tra i temi che molti di voi stanno esplorando, discussi più volte al corso,
c'è la variazione dei componenti costruttivi. Di seguito vi segnalo diverse
tecniche:

1. Revit 2010 - "Power Copy" script

Lo script, usato tra gli altri progetti, per la Lampada Nagashima,
è stato sviluppato durante lo scorso anno per permettere di effettuare
copie "intelligenti" di un componente, che ad ogni passo, permettesse anche
di variare dei parametri. L'ultimo esempio che pubblichiamo qui, sviluppato
da Stefano Guarnieri per il progetto Calatrava/superficie rigata di Valeria Vitale



Il vantaggio di questa tecnica è che permette di schedulare i valori dei parametri
(come si vede dalla immagine qui sopra, dove ogni componente ha dimensioni leggibili)


2. Revit 2011 - Componenti adattativi e Reporting Parameters

L'intento che lo script 2011 si prefiggeva è stato, nel frattempo "raggiunto" dallo sviluppo
software, come accade sempre più spesso nel recente panorama in cui cresce la capacità
di scripting da parte degli "utenti" e dei progettisti impegnati nella implementazione reale
nell'attività progettuale e realizzativa.

In particolare le funzioni, nuove, che permettono un controllo analogo sono
i componenti adattativi e i Reporting Parameters (Parametri di rapporto).

Del componente adattivo si è detto a lezione, paragonandolo a tutti gli altri sistemi
di controllo e produzione della variazione, primo tra tutti Generative Components,
software nato col nome di Custom Objects e precursore del settore, a cui si aggiungono
le "User Feature" di molti software di progettazione meccanica e, in ultimo, le diverse
opzioni concesse dal plug-in di Rhino Grasshopper.


Biennale di Venezia, 2010

I progetti che si occupano nel corso di questo tema sono, al momento, quello di
Lorenzo Catena, che mima il progetto di SHoP per la copertura del centro Post-Katryna
nei pressi New Orleans:



E quello, parallelo in corso di sviluppo, di Ivo Petri

A questa nuova modalità concessa da Revit, per lavorare questi temi su base eminentemente grafica,
si somma la necessità di controllare matematicamente le geometrie di progetto. Su questo tema,
si sono svolti incontri con il contributo del prof. Corrado Falcolini, del Dipartimento di Matematica, che ha
anche dato un contributo al Seminario "Forma e disegno nell'architettura del sei e settecento".

Sul tema del controllo matematico delle geometrie in Revit con metodi grafici, si è interessato
Giuseppe Di Fabio, citando anche il lavoro di "The Revit Kid":



Giuseppe è ora impegnato nella produzione di variazioni architettoniche del tema
di una copertura/portico a generatrici pseudo-sinusoidali.

Al tema della variazione architettonica di un componente
lucernario/copertura, infine si sta interessanto Elena Valik,
che a partire da un progetto per una piccola pensilina, e alla
parametrizzazione di un lucernario come pattern basato su tre punti,
sta ora passando alla produzione di vari componenti di chiusura orizzontale
per un sistema di copertura e lucernari a modulo triangolare variabile




Aspettiamo ora da Elena gli aggiornamenti del lavoro di parametrizzazione
e le sue applicazioni architettoniche.


Sostanzialmente i lavori di questa sezione richiamano i due possibili
contesti per un lavoro architettonico sulla variazione:

1 .  serie
la produzione di pezzi autonomi (o di design) con geometria variata nella serie.
Il paradigma della mass customization che abbiamo no inquadrato negli anni
in quello Beyond IKEA

2. pezzi unici
la produzione di oggetti architettonici fatti da componenti dalla geometria
variabile, a cui fanno riferimento moltissimi progetti della contemporaneità
e quelli prodotti nel Laboratorio di Tecniche Parametriche 2011.


Ha senso, però, in fondo, parlare in questi termini di distinzione?
Non si tratta anche di cambiare un pò il modo di progettare e renderlo più "diffuso"?
Figlio di questa "nuova standardizzazione fatta di pezzi diversi"? A questo tema è ispirata
la pubblicazione, e il concetto collegato, di versioning ipotizzato da SHoP Architects.

A voi, ora fare le vostre riflessioni parallele ai progetti che elaborerete.

Buon lavoro!





 

Store_Selections - It builds some virtual boxes, where recovering the past selections to compare each other

Random_Selection_Panels - It picks, accidentally, a number of panels between the selected, equal to the chosen percentage

Set_Color_In_View - It changes the color of the edges of each type, in the active view

Bridge_Of_The_ Peace - It places points in the space, following the shape of the roof of a bridge - Conceptual mass

Physical_ID - Before it loads a family in the .rvt, then it creates and rotates some istances of it

S.A.T.: the Truss - Writing and reading of text files to interact with other softwares

Setting_Line_Color - This code allows to set the color of all the lines within the document

Shape_Discovering - This code shows, by listing, the relationship between points and 3D snapped model lines - Conceptual mass

Line_By_Selected_Points - This code creates a line joining two selected points - Conceptual mass

Get_Nodes - This code lists some features of a Structural Frame (columns and beams) - Project Based

Naming_ReferencePoints  - This code allows to assign a "personal id" number to each reference point in the Comment Field - Conceptual mass

New_Caledonia -  This sample creates new family instances along an arc (inspired by Renzo Piano's project)

--
All the examples require Login to download the files

Titolo Aggiornamentoordinamento crescente Creazione Nuovi commenti tags Autore
U 3 5 anni 7 mesi fa 13 anni 1 mese fa Immagine, Projects, Tecniche Parametriche revital
U 4 5 anni 7 mesi fa 13 anni 1 mese fa Immagine, Projects, Tecniche Parametriche revital
U 5 5 anni 7 mesi fa 13 anni 1 mese fa Immagine, Projects, Tecniche Parametriche revital
U 13 5 anni 7 mesi fa 13 anni 1 mese fa Immagine, Projects, Tecniche Parametriche revital
Elena Valik - Aggiornamento copertura del 28.1.2011 5 anni 7 mesi fa 13 anni 1 mese fa Immagine Maurizio Mazzer
fabio-maiolin.jpg 5 anni 7 mesi fa 13 anni 1 mese fa Immagine Maurizio Mazzer
Matteo Ruperto - Parete ventilata del 27.11.2010 5 anni 7 mesi fa 13 anni 1 mese fa Immagine Maurizio Mazzer
1. ELEMENTI STRUTTURALI DELLA BIBLIOTECA 5 anni 7 mesi fa 13 anni 1 mese fa Immagine, Projects, Rivestimento di facciata esterna, Tecniche Parametriche Julian Bala
2. PARAMETRI DEI TIPI DI MURATURA DI TAMPONAMENTO ESTERNO 5 anni 7 mesi fa 13 anni 1 mese fa Immagine, Projects, Rivestimento di facciata esterna, Tecniche Parametriche Julian Bala
3. INFISSI DI TAMPONAMENO ESTERNO 5 anni 7 mesi fa 13 anni 1 mese fa Immagine, Projects, Rivestimento di facciata esterna, Tecniche Parametriche Julian Bala

Pagine

 

Thanks to prof. Todesco for his vital help.

FileInfo t = new FileInfo(@"C:\Documents and Settings\Gguarnieri\Documenti\Desktop\TrussData.txt");
            StreamWriter Tex = t.CreateText();
            Tex.WriteLine("BARS LIST");
            Tex.Write(Tex.NewLine);
            Tex.Write("{0}_________", "ID");
            Tex.Write("{0}_________", "lenght");
            Tex.Write("{0}_________", "from node");
            Tex.Write("{0}_________", "to node");
            Tex.Write(Tex.NewLine);
            Tex.Write("-----------------------------------------------------------------------------------------");
            Tex.Write(Tex.NewLine);
 
            SetVertici vertici = new SetVertici();
            double ConvMeter = 0.3048;
            int approx = 2;
            int numBars = 0;
            Level level=null;
            ElementIterator levelIter = Application.ActiveDocument.get_Elements(typeof(Level));
            levelIter.Reset();
            while (levelIter.MoveNext())
            {
                Level level1 = levelIter.Current as Level;
                if (level1.Elevation > 0)
                {
                    level = level1;
                }
            }
            ElementIterator elemIter = Application.ActiveDocument.get_Elements(typeof(FamilyInstance));
            elemIter.Reset();
            
            while (elemIter.MoveNext())
            {
               
                FamilyInstance FamInst = elemIter.Current as FamilyInstance;
                StructuralType StructType = FamInst.StructuralType;
                Location Loc = FamInst.Location;
                ElementId ElemId = FamInst.Id; 
                
                string familyName = FamInst.Name;
                string NameFam = ElemId.Value.ToString();
                int giunto = 0;
                Vertice v = null;
 
                if (familyName == "cone")
                    {
                        giunto = 1;
                        LocationPoint point = Loc as LocationPoint;
                        v = vertici.getVertice(point.Point,giunto);
                        
                        
                    }
                    else if (familyName == "cylinder")
                    {
                        giunto = 2;
                        LocationPoint point = Loc as LocationPoint;                        
                        v = vertici.getVertice(point.Point,giunto);
                        
                     
                    }
 
                else if (StructType == StructuralType.Beam || StructType == StructuralType.Brace)
                {
                    
                    numBars = ++numBars;
                    LocationCurve CurveLoc = Loc as LocationCurve;
                    Curve curve = CurveLoc.Curve;
 
                    XYZ StartPoint = curve.get_EndPoint(0);
                    XYZ EndPoint = curve.get_EndPoint(1);
 
 
                    Vertice v0 = vertici.getVertice(StartPoint, giunto);
                    string id0 = v0.id.ToString();
 
                    Vertice v1 = vertici.getVertice(EndPoint, giunto);
                    string id1 = v1.id.ToString();
 
                    
                    
                    string lenght = (Math.Round((curve.Length) * ConvMeter, approx)).ToString();
 
 
                    string data = String.Format(" {0}      {1,16}     {2,15}     {3,20}", NameFam, lenght, id0,id1);
                    Tex.WriteLine(data);
                   
                    Tex.WriteLine("-----------------------------------------------------------------------------------------");
                    
                   
                }
                else if(StructType== StructuralType.Column)
                {
                    
                    numBars = ++numBars;                    
                    LocationPoint point = Loc as LocationPoint;
                    Vertice v0 = vertici.getVertice(point.Point, giunto);
                    string id0 = v0.id.ToString();
                    Vertice v1 = vertici.getVertice(v0.x,v0.y,level.Elevation,giunto);
                    string id1 = v1.id.ToString();
 
                    string lenght = (Math.Round((v0.distance(v1)) * ConvMeter, approx)).ToString();
                    
                    string data = String.Format(" {0}      {1,16}     {2,15}     {3,20}", NameFam, lenght, id0, id1);
                    Tex.WriteLine(data);
 
                    Tex.WriteLine("-----------------------------------------------------------------------------------------");
                }
                
            }
 
 
 
            Tex.Write(Tex.NewLine);
            Tex.WriteLine("NODES LIST");
            Tex.Write(Tex.NewLine);
            Tex.Write("{0}_________", "NUMBER");
            Tex.Write("{0,5}_________", "X");
            Tex.Write("{0,5}_________", "Y");
            Tex.Write("{0,5}_________", "Z");
            Tex.Write("{0,5}_________", "JOINT");
            Tex.Write(Tex.NewLine);
            Tex.Write("-----------------------------------------------------------------------------------------");
            Tex.Write(Tex.NewLine);
            for (int i = 0; i < vertici.Count(); i++)
            {
                
                Vertice v = vertici.at(i);
                string giunto = "";
                if (v.joint == 0)
                {
                    giunto = "unknown";
                }
                else if (v.joint == 1)
                {
                    giunto = "cone";
                }
                else if (v.joint == 2)
                {
                    giunto = "cylinder";
                }
 
 
                Tex.Write("{0,3}", v.id.ToString());
                Tex.Write("{0,20}", (Math.Round((v.x) * ConvMet, approx)).ToString());
                Tex.Write("{0,20}", (Math.Round((v.y) * ConvMet, approx)).ToString());
                Tex.Write("{0,20}", (Math.Round((v.z) * ConvMet, approx)).ToString());
                Tex.Write("{0,20}", giunto);
                Tex.Write(Tex.NewLine);
                Tex.Write("-----------------------------------------------------------------------------------------");
                Tex.Write(Tex.NewLine);
            }
 
            Tex.Write(Tex.NewLine);
            Tex.Write("{0,10}_________", "BARS number");
            Tex.Write("{0,10}_________", numBars.ToString());
            Tex.Write("{0,10}_________", "NODES number");
            Tex.Write("{0,10}_________", vertici.Count().ToString());
 
            Tex.Close();     
          }           
 
 
public class SetVertici
    {
 
        List<Vertice> vertici = new List<Vertice>();
 
        public Vertice getVertice(double x, double y, double z, int joint)
        {
            Vertice posizione = new Vertice(x, y, z, joint);
      
            Vertice piuVicino = null;
            double distanza2Minima = 0;
            
            for (int i = 0; i < vertici.Count(); i++)
            {
           
                double distanza2 = vertici[i].distance2(posizione);
                int giuntoVero = vertici[i].joint;
                if (giuntoVero != 0 && distanza2<5)
                {
                    posizione.joint = giuntoVero;
                }
 
                if (piuVicino == null || distanza2 < distanza2Minima)
                {
                    piuVicino = vertici[i];
                    distanza2Minima = distanza2;
                }
            }
           
            if (piuVicino != null && distanza2Minima < 1)
            {
                piuVicino.joint = posizione.joint;
                return piuVicino;
            }
           
 
            posizione.id = vertici.Count();
            vertici.Add(posizione);
 
 
            return posizione;
        }
 
        public Vertice getVertice(Autodesk.Revit.Geometry.XYZ coords,int tipoGiunto)
        {
            return getVertice(coords.X, coords.Y, coords.Z,tipoGiunto);
        }
        public int Count()
        {
            return vertici.Count();
        }
 
        public Vertice at(int index)
        {
            return vertici[index];
        }
 
    }
 
 
public class Vertice
    {
   
        double _x;
        double _y;
        double _z;
        int _id;
        int _joint;
        
        
 
        public Vertice(double x, double y, double z, int TipoGiunto)
        {
            _x = x;
            _y = y;
            _z = z;
            _id = -1;
            _joint = TipoGiunto;
        }
 
      
        public double x
        {
            get { return _x; }
 
        }
 
        public double y
        {
            get { return _y; }
 
        }
 
 
        public double z
        {
            get { return _z; }
 
        }
        
        public double distance2(Vertice v)
        {
            return Math.Pow(v.x - _x, 2) + Math.Pow(v.y - _y, 2) + Math.Pow(v.z - _z, 2);
        }
 
      
        public double distance(Vertice v)
        {
            return Math.Sqrt(distance2(v));
        }
 
        public int id
        {
            get { return _id; }
            set { _id = value; }
        }
 
        public int joint
        {
            get { return _joint; }
            set { _joint = value; }
        }
    }

[ 2011 ]  l'evoluzione dei metodi di progettazione e produzione,  a partire da presupposti e provocazioni tecnologiche conduce alla evoluzione dei profili professionali e umani. Non si tratta, quindi, solo di riconoscere nuove forme di autorialità nel cloud computing per produrre spimes e strutturare gruppi allargati e flessibili di produzione, ma progettare per le nuove forme organizzative, usando flessibilità e negoziazione come forme espressive e il networking sui server di progettazione come strumento operativo.

Per passare dal solipsistico parametric modeling al "parametric being".

Bambupola parte prima

Il progetto nasce dall'idea iniziale di creare un prototipo per una struttura leggera che abbia le seguenti caratteristiche: modularità,sostenibilità , facilità di montaggio. Ho trovato nel bambù le caratteristiche utili al mio caso , un materiale modulare , sufficientemente resistente e molto economico. Partendo dal concetto che ogni materiale racchiude in se una forma che esalta al massimo le sue caratteristiche intrinseche, ho raccolto più informazioni possibili sull'utilizzo del bambù allo stato attuale, a tal proposito consiglio a chi è interessato la seguente lettura " Il bamboo come materiale da costruzione".

 

La naturale predisposizione della pianta è di resistere alla flessione generata dall'azione del vento, ne consegue che un'appropriato utilizzo debba tenere conto di queste caratteristiche in questo caso tale ragionamento si è risolto con la progettazzione di una tensostruttura a forma di cupola a base esagonale. La difficoltà principale è nel disegno. Normalmente il cervello dell'architetto pensa una forma, la mano la disegna e infine c'è qualcuno che la realizza. Nel caso della tensostruttura la difficoltà sta nel prevedere la forma effettiva che assumerà il materiale quando si troverà sotto sforzo.
Il modellino in  scala è di notevole aiuto in questi casi, con l'accortezza di usare un materiale che simuli un comportamento verosilmile, ad esempio si può usare il midollino di rattan o la vetroresina. Il primo che ho realizzato è  uno studio della forma ed è interattivo, una sorta di  vista delle varie configurazioni che si possono ottenere con sei semicirconferenze montate all'interno di un perimetro esagonale e variando l'inclinazione rispetto al suolo.
L'utilizzo del software aumenta le capacità di studio della forma esponenzialmente, in questo caso ho utilizzato il programma Mathematica, sono partito dal "mattone" del progetto, ovvero l'arco, con il comando Manipulate ho potuto controllare le variabili che mi interessavano, in modo da creare uno strumento in grado di generare forme tanto insperate quanto attraenti da un punto di vista architettonico.
Il controllo delle informazioni rende il tutto realizzabile.
 
L'arco è realizzato facendo estrudere una circonferenza lungo una curva matematica, che in questo caso è una semicirconferenza.
 
Attraverso il linguaggio matematico si possono creare delle matrici che gestiscono la traslazione e la rotazione delle curve lungo uno o più assi. Altre matrici moltiplicano il numero di curve da noi scelte creando delle superfici. Il comando "Manipulate"crea uno strumento interattivo in tempo reale in cui possiamo controllare le misure del nostro modello e vederlo in 3D.
 
 
La forma scelta per il progetto è la piu semplice, dato che l'intensione è quella di realizzare un prototipo.Ma le possibilità sono infinite, modificando solo due parametri, l'inclinazione e la distanza degli archi dal centro posso ottenere delle forme controllabili e generate a partire da un solo arco. Ecco alcuni esempi:
Sembra quasi una geodetica..
 
copertura di una hall?
 
 
Questa potrebbe essere una matrice geometrica per la progettazione di uno stadio, oppure un vaso da realizzare con archi d'acciaio e macchine a controllo numerico..

Pagine

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer