Prof.ssa **Ginevra Salerno**

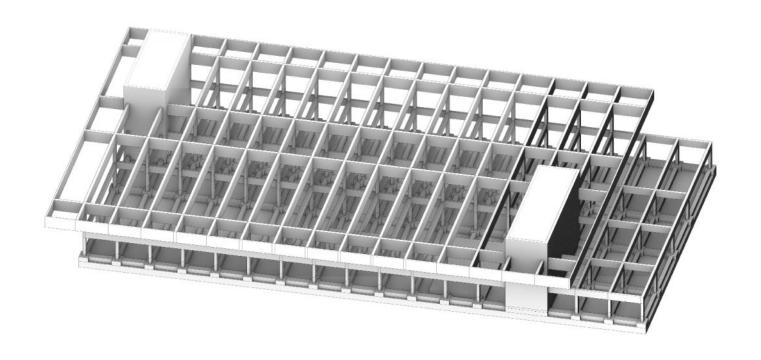
Studenti: Abrusci Miriam, Fiacco Simone, Lupino Eleonora UNIVERSITÀ DEGI

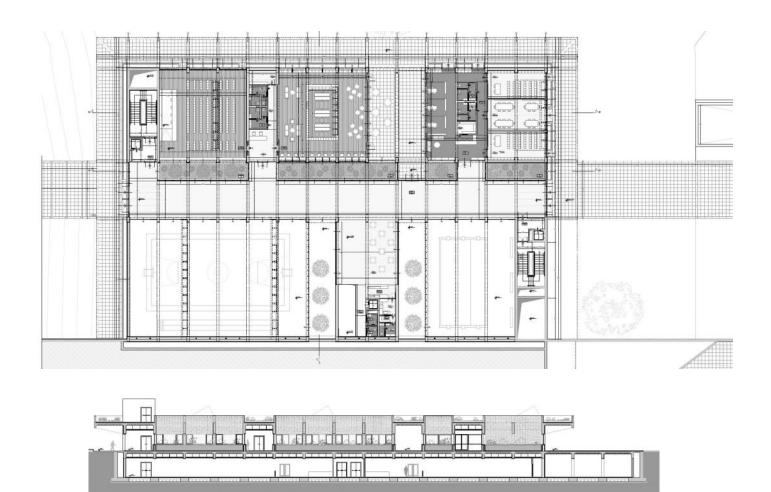
1- CARATTERISTICHE GENERALI DEL PROGETTO

Locazione:

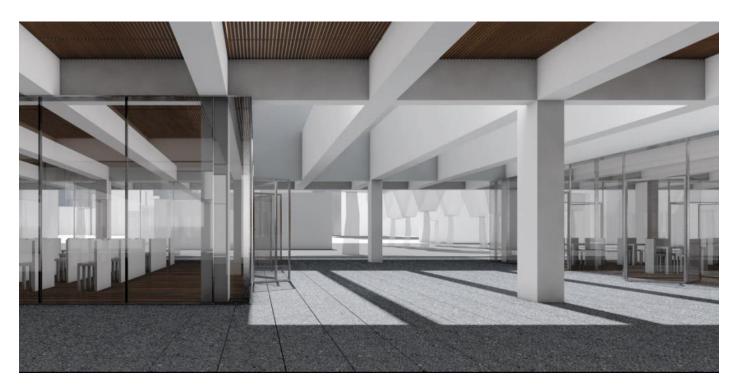
Roma, Quartiere Alessandrino, Via degli Olmi.

Destinazione d'uso:

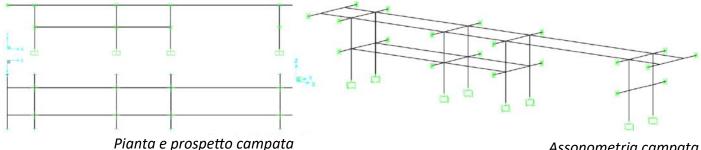

Centro Polifunzionale.


Descrizione:

L'edificio è costituito da un piano interrato (dedicato ai parcheggi e all'area sportiva), un piano terra (dedito alle attività culturali e comunitarie) e una copertura accessibile al pubblico.


Il centro culturale prevede una struttura intelaiata scandita da un modulo di 5,00 m x 5,00 m in calcestruzzo armato di classe C45/55 e un acciaio da armatura B450C .

Sono stati inoltre previsti due corpi strutturali posti agli antipodi in grado irrigidire la struttura in maniera armonica così da attenuarne le possibili rotazioni (come nel caso di fenomeni sismici).


Pianta e sezione longitudinale

Render interno

2—MODELLO DELLA CAMPATA

Per poter trasporre il progetto su SAP2000, il primo passo è stato quello di effettuare una semplificazione del modello di studio, andando a prendere in considerazione una sola campata strutturale; da questo stralcio, per via della grande modularità del progetto, è stato possibile definire il comportamento dell'intero telaio per tutto il resto della struttura.

Assonometria campata

In corrispondenza dei punti in cui le travi secondarie sono tagliate, è stato inserito un tipo di vincolo a doppio pendolo, impedendo in quei punti la traslazione verticale e la rotazione, imitando di conseguenza il comportamento continuo della struttura.

I pilastri invece sono stati vincolati a terra tramite degli incastri semplici.

Dopo aver trovato il centro d'area degli impalcati e aver associato il diaphragm (per considerarli come impalcati rigidi), si è passato alla definizione dei carichi strutturali, permanenti e accidentali. Considerando che l'edificio ha un tipo di destinazione d'uso pubblica e che si prevede un affollamento significativo degli spazi, il carico accidentale è risultato particolarmente influente.

 $q_{tot} \left[\frac{kN}{m^2} \right] = \gamma_{G1} q_s + \gamma_{G2} q_p + \gamma_{Q1} q_a$

Calcolo dei carichi:

	p (kN/m³)	b (m)	h (m)	A (m ²)	n. elementi / m	q (kN/m²)							
Pignatte	12,00	0,40	0,20	0,08	2	1,92							
Travetti prefabbricati	25,00	0,10	0,20	0,02	2	1,00							
Caldana	25,00	1,00	0,07	0,07	1	1,75							
Sovracarichi strutturali Qs						4,67							
	p (kN/m³)	b (m)	h (m)	A (m ²)	n. elementi / m	q (kN/m²)							
Isolante in fibra di legno	1,20	1,00	0,06	0,06	1	0,07							
Massetto	22,50	1,00	0,05	0,05	1	1.175							
Pavimentazione in travertino	24,5	1,00	0,03	0,03	1	0,735							
Controsoffitto in gesso	0,35	1,00	0,02	0,02	1	0,01							
Sovracarichi Permanenti Qp						1,99							
Sovracarichi Accidentali Qa per a	Sovracarichi Accidentali Qa per ambienti a uso piazza 3,00												

$$q_{tot} \left[\frac{kN}{m^2} \right] = 1.3(4.67) + 1.5(1.99) + 1.5(3) = 13,556 \text{ kN/m}^2$$

Definito il carico q_{tot} , è stato poi considerato applicato a una campata di 5m da cui poi è stato possibile effettuare un pre-dimensionamento degli elementi strutturali con l'ausilio delle tabelle Excel.

Pre-dimensionamento degli elementi strutturali su excel

Trave principale piano SUPERIORE maggiormente sollecitata:

interasse (m)	q _s (KN/m ²)	q _p (KN/m ²)	q _a (KN/m²)	q _u (KN/m)	luce (m)	M _{max} (KN*m)	f _{yk} (N/mm ²)	f _{yd} (N/mm ²)
5,00	4,67	1,99	3,00	66,21	20,00	3310,25	450,00	391,30
				89,61	20,00	4480,25	450,00	391,30
							l I	

f _{ck} (N/ mm ²)	f _{cd} (N/ mm²)	β	r	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	Н	H/I	area (m²)	peso unitario (KN/m)
45,00	25,50	0,49	2,20	40,00	125,38	3,00	128,38	180,00	0,06	0,72	18,00
45,00	25,50	0,49	2,20	40,00	145,87	3,00	148,87	verificata			

Trave principale piano INFERIORE maggiormente sollecitata:

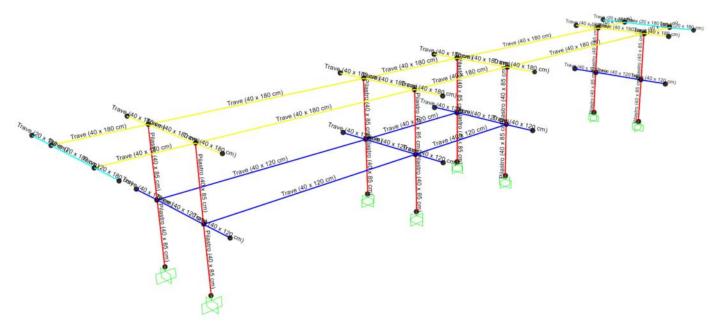
interasse (m)	q _s (KN/m ²)	q _p (KN/m ²)	q _a (KN/m²)	q _u (KN/m)	luce (m)	M _{max} (KN*m)	f _{yk} (N/mm ²)	f _{yd} (N/mm ²)
5,00	4,67	1,99	3,00	66,21	15,00	1862,02	450,00	391,30
				81,81	15,00	2300,77	450,00	391,30

f _{ck} (N/ mm ²)	f _{cd} (N/ mm ²)	β	r	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	Н	H/I	area (m²)	peso unitario (KN/m)
45,00	25,50	0,49	2,20	40,00	94,04	3,00	97,04	120,00	0,06	0,48	12,00
45,00	25,50	0,49	2,20	40,00	104,53	3,00	107,53	verificata			

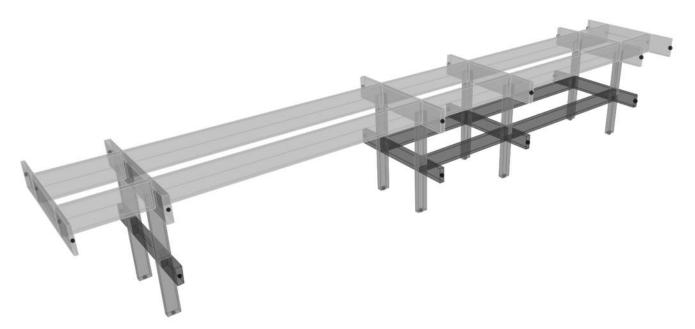
Sbalzo maggiormente sollecitato:

interas	se (m)	q _s (KN/m²)	q _p (KN	/m²) q _a (I	KN/m²)	q _u (KN	/m)	luce (m)	M _{max} (KN*m)	f _{yk} (N/mm	²) f _{yd} (N/	mm²)
5,0	00	4,67	1,99	9 3	3,00	66,2	1	5,00	827,56	450,00	391	,30
f _{ck} (N/mm ²)	f _{cd} (N/mm ²)	β	r	b (cm)	h _u (c	m) δ	(cm)) H _{min} (cr	m) H	H/	l area	a (m²)
45,00	25,50	0,49	2,20	40,00	62,6	69	3,00	65,69	180,00	0,1	3 0	,72
peso unita	ario (KN/m)	q _e	E (N	l/mm²)	I _x (cr	m ⁴)	١	v _{max} (cm)	luce	e/v _{max}	Verifica	to?
18	,00	58,80	21	000	19440	0000		0,11	45	545	Sì	Ì

Pilastro maggiormente sollecitato:


	mastro magazioni ante some di acciditato.													
L _I m 12,	1	L _s m 5,0		mq 2,50	trave _p kN/m 18,00	k	ave _s N/m 8,00	q _{trave} kN 409,50	kN	q _s I/mq ,67	q _⊳ kN/m 1,99		q _a kN/mq 3,00	
q _{solaio} kN	n _{piani}	N kN	f _{ck} Mpa	f _{cd} Mpa	A _r		b _{min} cm	E Mp		β		l m	λ*	
827,56	2	247	4 45,0	25,5	970	0,2	31,1	210	00	2,00	4	,00	90,15	
ρ _{min} cm	b _{min}	b cm	h _{min} cm	h cm	A _{de}		I _{design}	I _{max}	W _{max} cm3	q _t kN/m	M _t	σ _{max} Mpa	Verificato?	
8,87	30,74	40,00	24,26	85,00	340	00	453333	20470 83	48166, 67	66,21	862,04	25,17	Sì	

In base alle considerazioni ottenute dalle analisi per il pre-dimensionamento e alla base di partenza del progetto architettonico, sono state confermate le sezioni definite in precedenza e la classe di resistenza del calcestruzzo posta a C45/55:


• Travi Principali e Sbalzi: 40 x 180 cm

Pilastri: 40 x 85 cm

• Travi Piano Inferiore: 40 x 120 cm

Attribuzione delle sezioni su SAP2000

Vista estrusa della campata su SAP2000

A questo punto si è effettuata una verifica estrapolando da SAP i valori dei momenti sulle travi principali e lo sforzo normale sui pilastri con il modello della campata precedentemente disegnata.

SAP2000

Trave principale piano SUPERIORE maggiormente sollecitata:

intera	asse (m)	q _s (I	(N/m²)	q _p (KN/m²) q _a (KN/	m²) q _u (l	KN/m)	luce (m)	M _{max} (KN*m)	f _{yk} (N/m	nm²)	f _{yd} (N/mm²)
;	5,00	4	,67	1,99	1,99 3,00		6,21	20,00	2145,41	450,0	00	391,30
						89	9,61	20,00	2903,64	450,0	00	391,30
f _{ck} (N/ mm ²)	f _{cd} (N/ mm²)	β	r	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	Н	H/I	area (m²)		so unitario (KN/m)
45,00	25,50	0,49	2,20	40,00	100,94	3,00	103,94	180,00	0,05	0,72		18,00
45,00	25,50	0,49	2,20	40,00	117,43	3,00	120,43	verificata	3			

Trave principale piano INFERIORE maggiormente sollecitata:

intera	asse (m)	q _s (K	N/m²)	q _p (KN/m²) q _a (KN/	m²) q _u (KN/m)	luce (m)	M _{max} (KN*m)	f _{yk} (N/r	nm²)	f _{yd} (N/mm²)
;	5,00	4	67	1,99	3,00	6	6,21	15,00	1416,90	450,	00	391,30
						8	1,81	15,00	1817,67	450,	00	391,30
f _{ck} (N/ mm ²)	f _{cd} (N/ mm ²)	β	r	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	Н	H/I	area (m²)		so unitario (KN/m)
45,00	25,50	0,49	2,20	40,00	82,03	3,00	85,03	120,00	0,06	0,48		12,00
45,00	25,50	0,49	2,20	40,00	92,91	3,00	95,91	verificata	1			

Sbalzo maggiormente sollecitato:

interas			q _p (KN/m	g) q _a (KN	l/m²) d	q _u (KN/	/m)	luce	e (m)		M _{max} KN*m)	f _{yk} (N/mm²) f _{yd} (N/mm²)
5,0	5,00 4,6		1,99	3,0	0	66,2	1	5	,00	8	327,62	4	50,00	391,30
f _{ck} (N/mm ²)	f _{cd} (N/mm ²)	β	r	b (cm)	h _u (c	m) (δ (cm)		H _{min} (c	m)	Н		H/I	area (m²)
45,00 25,50		0,49	2,20	40,00 6		69	3,00)	65,69	9	180,00)	0,13	0,72
peso unita	ario (KN/m)	q _e	E (N/m	m ²)	I _x (cm	⁴)		V _{max}	(cm)		I/v	max	,	/erificato?
18	,00	194,91	2100	0	194400	000		0,	11		7523	81,8	2	Sì

Pilastro maggiormente sollecitato:

	L _p m		L _s			rea n2	trav kN	-		ıve _s I/m	q _{trave}			ମ୍ବs /mq	kľ	q _p kN/mq		q _a kN/mq
	12,50)	5,0	0	62	,50	18,	,00	18	,00	409,5	0	4,	67	1	1,99		3,00
q _{sola}		n _{piani}	N kN	ı	f _{ck} Mpa		f _{cd} Ipa	A _n		b _{min} cm	1	Е //pa					l m	λ*
827,	56	2	2522	,00	45,0) 2:	25,5		9,0	31,4	2	1000		2,00		4	,00	90,15
-	min : m	b _{min} cm	b cm	h _n cr	nin M	h cm		A _{desig}		I _{design}	I _{max}	W _m		q _t kN/m	N kN³	•	σ _{max} Mpa	Verificato?
8,	87	30,74	40,00	24,	,73	85,00	0	3400	0	453333	2047 83	0 4816 67		66,21	862	,04	25,31	Sì

Verifica a flessione della trave: $\sigma = M/W < f_{cd}$

b (cm)	h (cm)	W (cm^3)	W (mm^3)	M (kN*m)	M (n*mm)	σ (MPa)	verificato
40	180	216000	216000000	2903.64	2903640000	13.442	si
40	120	96000	96000000	1817.67	1817670000	18.934	si

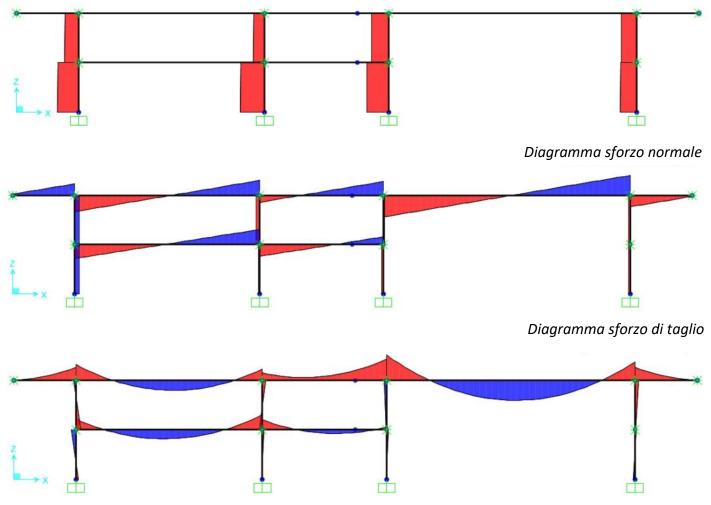
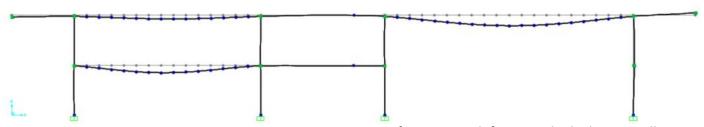
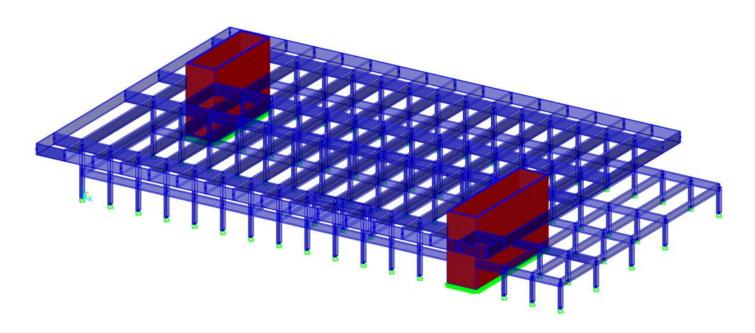



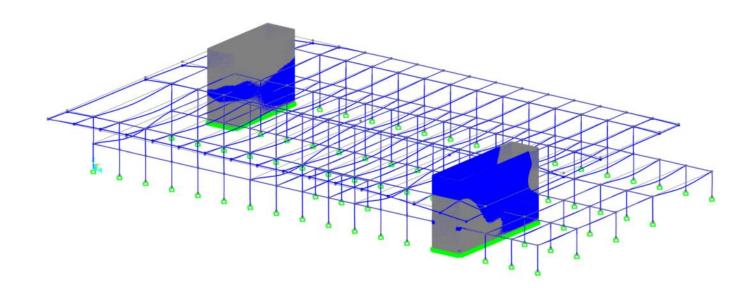
Diagramma momento

A questo punto sono stati verificati gli spostamenti verticali degli elementi in campata e negli sbalzi, per verificare che gli abbassamenti o gli innalzamenti non fossero fuori dai limiti di normativa: essa impone che l'abbassamento massimo sia inferiore a L/250 (m).

Analizzando gli spostamenti verticali è risultato evidente che gli sbalzi sugli estremi del telaio hanno controbilanciato in modo significativo l'abbassamento delle travi principali da 15 m e da 20 m.


Configurazione deformata degli elementi allo S.L.E.

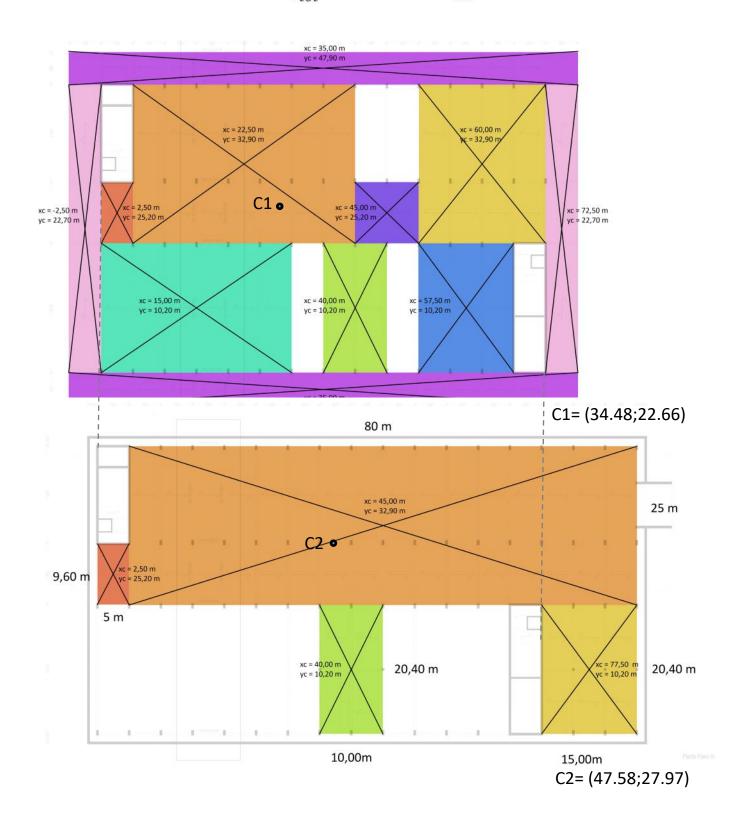
	TRAVE 20,00 m	TRAVE 15,00 m (piano superiore)	TRAVE 15,00 m (piano inferiore)	SBALZO 5,00 m
U1 (m)	0,0003	0,0003	0,000067	0,0003
U2 (m)	0,00	0,00	0,00	0,00
U3 (m)	0,0109	0,0039	0,0101	0,0039
L trave (m)	20,00	15,00	15,00	5,00
f max	0,08	0,06	0,06	0,02
Verifica?	Si	Si	Si	Si


Verifica degli spostamenti degli elementi più soggetti a tale comportamento

Avendo studiato una campata tipo, il passo finale è stato quello di realizzare un modello della struttura nella sua interezza, con l'aggiunta dei setti con i blocchi scale e ascensore.

I risultati ottenuti dalla simulazione della deformata di questo modello sono risultati congrui ai valori ottenuti dalla campata singola, dimostrando la veridicità delle informazioni precedenti. Come prevedibile, gli abbassamenti più evidenti si sono riscontrati in corrispondenza degli sbalzi agli angoli dell'edificio.

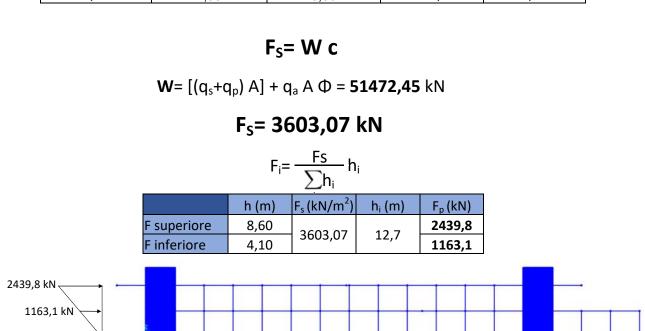
Modello dell'intera struttura

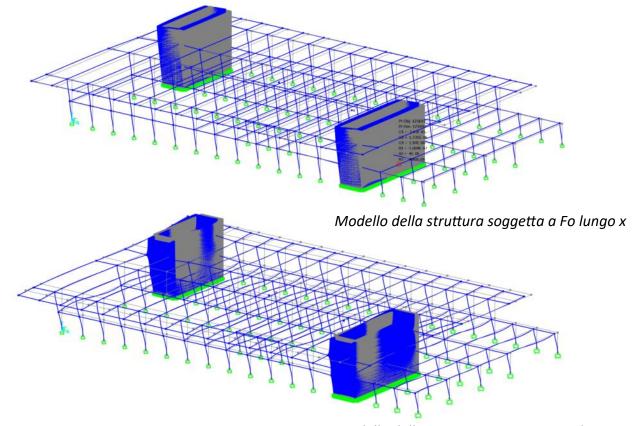

Modello dell'intera struttura deformata

Tenendo in considerazione la localizzazione dell'edificio e il fatto che esso abbia soli due piani (di cui solo uno fuori terra), il carico causato dal vento è di fatto praticamente uguale a zero.

Un fattore molto importante da studiare è tuttavia l'azione sismica.

Essa si applica sui centri di massa di ogni impalcato, il passo successivo è stato quindi calcolarne le coordinate.


$$x_G = \frac{\sum_{i=1}^n A_i \cdot x_{Gi}}{A_{tot}} \qquad y_G = \frac{\sum_{i=1}^n A_i \cdot y_{Gi}}{A_{tot}}$$


È stata quindi calcolata la forza sismica totale e successivamente la forza sismica agente su ogni piano, ponendo le risultanti nel centro di massa degli impalcati.

Calcolo della forza sismica in tutta la struttura:

q _s (kN/mq)	q _p (kN/mq)	q _a (kN/mq)	A (m ²)	С
4,67	1,99	3,00	6557,00	0,07

La forza sismica è stata applicata nelle due direzioni principali x e y, verificandone gli effetti.

Modello della struttura soggetta a Fo lungo y

Da questo studio sono stati ricavati i valori di sforzo normale e di momento relativi ai pilastri: questo ha permesso di fare un'analisi sull'eccentricità degli elementi presi in questione, dalla quale è stato possibile verificare o meno la presenza di pilastri soggetti a pressoflessione.

Pressoflessione								
Frame	Station	OutputCase	N	M	е	Sezione		
Text	m	Text	KN	KN-m	m	Sezione		
309	4.4	Q_SLU+Fo	-2007.92	81.8537	0.04	Compressa		
261	4.4	Q_SLU+Fo	-755.963	30.1423	0.04	Compressa		
252	4.4	Q_SLU+Fv	-2339.86	-91.9128	0.04	Compressa		
309	4.4	Q_SLU+Fv	-2013.96	73.0686	0.04	Compressa		
252	4.4	Q_SLU+Fo	-2344.73	-83.4756	0.04	Compressa		
261	0	Q_SLU+Fo	-755.963	-26.8668	0.04	Compressa		
236	4.1	Q_SLU+Fo	-358.519	12.5702	0.04	Compressa		
236	0	Q_SLU+Fo	-358.519	-11.4808	0.03	Compressa		
310	4.4	Q_SLU+Fo	-1749.22	53.3941	0.03	Compressa		
251	4.4	Q_SLU+Fv	-1892.48	-57.606	0.03	Compressa		

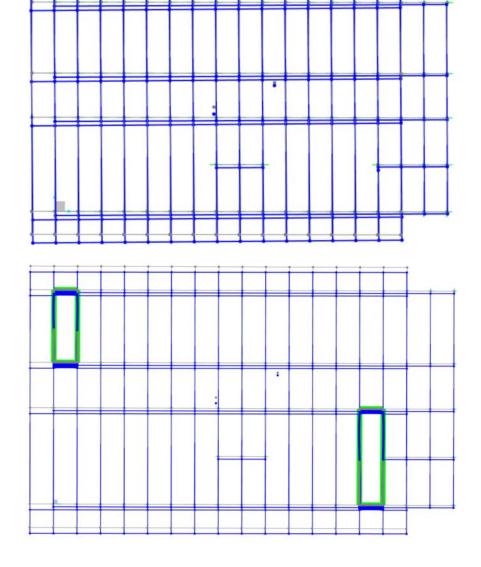
Nella tabella sono presenti i pilastri di tutta la struttura con maggiore eccentricità.

Abbiamo verificato che nessun pilastro è soggetto a pressoflessione poiché e> H/6.

La sezione di tutti i pilastri della struttura è completamente compressa, pertanto non sono state necessarie ulteriori verifiche.

Per quanto riguarda i setti sono state sommate tutte le RV alla base ricavandone la risultante N dello sforzo normale su ogni setto.

Abbiamo quindi ricavato la tensione media $\sigma = N/A$

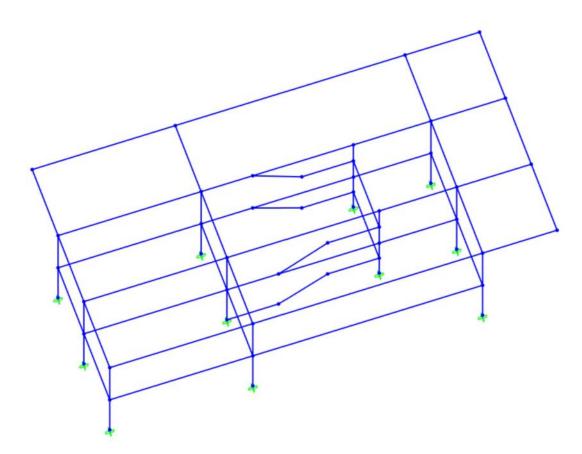

CALCOLO TENSIONE MEDIA SETTO 1								
Sforzo Normale Setto -	Area (mq)	Tensione Media (Mpa)						
3202.199	12.24	0.261617565						
Sforzo Normale Setto - Fv (kN)	Area (mq)	Tensione Media (Mpa)						
2816.733	12.24	0.230125245						
CALCO	CALCOLO TENSIONE MEDIA SETTO 2							
Sforzo Normale Setto - Fo (kN)	Area (mq)	Tensione Media (Mpa)						
3132.516698	15.24	0.205545715						
Sforzo Normale Setto - Fv (kN)	Area (mq)	Tensione Media (Mpa)						
3149.002	15.24	0.206627428						

La tensione media, come prevedibile, è risultata molto bassa. Questo perché i setti sono molto sovradimensionati.

Successivamente abbiamo provato a verificare la pressoflessione nei pilastri nel caso in cui la struttura non avesse i setti da noi progettati.

È risultato che alcuni pilastri, come prevedibile, erano pressoinflessi, ma effettuando la verifica delle tensioni massime è risultato che σ max < fcd.

Pressoflessione - Struttura senza setti								
Frame	OutputCase	N	М3	е	Sezione	3u	σmax	Verifica
Text	Text	KN	KN-m	m		mm	Mpa (N/mm2)	σmax < fcd
246	Q_SLU+Fo	-345.35	-95.519	0.276	Pressoinflessa	445.232	-3.87	VERIFICATO
241	Q_SLU+Fo	-367.36	-99.622	0.271	Pressoinflessa	461.454	-3.980	VERIFICATO
236	Q_SLU+Fo	-413.31	-94.309	0.228	Pressoinflessa	590.451	-3.499	VERIFICATO
245	Q_SLU+Fo	-577.64	-98.864	0.171	Pressoinflessa	761.547	-3.792	VERIFICATO
250	Q_SLU+Fo	-560.61	-94.57	0.168	Pressoinflessa	768.920	-3.645	VERIFICATO
240	Q_SLU+Fo	-640.09	-92.383	0.144	Pressoinflessa	842.015	-3.800	VERIFICATO



Comportamento della struttura a seguito dell'azione sismica in assenza di setti

Comportamento della struttura a seguito dell'azione sismica in presenza di setti Infine abbiamo inserito, sempre sul modello della struttura senza setti, delle travi inginocchiate per garantire il collegamento verticale tra i piani dell'edificio.

Facendo una verifica delle tensioni presenti sui pilastri in prossimità delle travi inginocchiate, abbiamo constatato che le tensioni su questi pilastri sono leggermente superiori a quelle degli altri pilastri dell'edificio.

Tensioni sui pilastri delle scale								
Frame	Frame Station		N (kN)	M3 (kNm)	σ			
512	0	Q_SLU+Fo	-2216.8	-84.8701	-8.28201			
231	0	Q_SLU+Fo	-2171.23	-90.209	-8.25882			
357	0	Q_SLU+Fo	-1943.37	-92.3891	-7.6339			
355	0	Q_SLU+Fo	-2014.69	-75.8387	-7.50005			
234	0	Q_SLU+Fo	-1469.85	-111.315	-6.63411			
199	0	Q_SLU+Fo	-2216.8	-5.4882	-6.63395			
518	0	Q_SLU+Fo	-2014.69	-30.9149	-6.56738			
514	0	Q_SLU+Fo	-2190.39	-3.6616	-6.51835			

In conclusione, questo studio finale ci è stato utile per capire che i setti che abbiamo inserito all'inizio del nostro progetto non sono necessari visto che l'edificio, date le dimensioni importanti degli elementi strutturali del telaio, non necessita di ulteriori controventi.