
Centro delle rigidezze e ripartizione delle forze sismiche

Prima parte

Per la seconda esercitazione si calcola la rigidezza di un impalcato in calcestruzzo armato con telai Shear-Type, per poi arrivare a determinare la reazione elastica di ogni controvento sottoposto a forze orizzontali.

L'impalcato è formato da 7 telai con pilastri 40x60 cm, 3 telai orizzontali e 4 telai verticali, con luci di 6 m e 10 m. Ogni telaio che compone la struttura è un telaio Shear-Type.

Telaio 1 V = pilastri 1 e 5

Telaio 2 V = pilastri 2 e 6

Telaio 3 V = pilastri 3, 7 e 9

Telaio 4 V = pilastri 4, 8 e 10

Telaio 1 O = pilastri 1, 2, 3 e 4

Telaio 2 O = pilastri 5, 6, 7 e 8

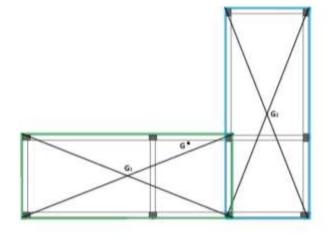
Telaio 3 O = pilastri 9 e 10

Il primo passo è quello di calcolare le rigidezze dei controventi dell'edificio che dipendono dal modulo di Young, dall'altezza del pilastro e momento d'inerzia.

$$K = \frac{12E}{h^3} \sum I_i$$

Il modulo di Young dipende dal materiale, per il calcestruzzo è 21000 N/mm², l'altezza dell'impalcato è 3,20 m e il modulo d'inerzia dei pilastri dipende da come sono posizionati.

 $I_X = bh^3/12 = 720000 \text{ cm}^4$


 $I_y = hb^3/12 = 320000 \text{ cm}^4$

		Step 1: calcolo delle ri	gidezze traslanti dei controve	nti dell'edifi	CIO
Telaio 1v	1.5	pilastri che individuano il telaio	Telaio to	1234	pilastri che individuano il telaio
E (N/mmg)	21000.00	modulo di Young	E	21000.00	modulo di Young
H (m)	3.20	altezza dei pilastri	H	3,20	altezza dei pilastri
1.1 (cm/4)	320000.00	momento dinerzia pilastro 1	11		momento d'inerzia pilastro 1
1.2	320000.00	momento dinerzia pilastro 2	12	CONTRACTOR OF STREET	momento d'inerzia pilastro 2
13	0.00	momento dinerzia pilastro 2 momento dinerzia pilastro 3	13		momento d'inerzia pilastro 2 momento d'inerzia pilastro 3
1.4	0.00	momento dinerzia pilastro 3 momento dinerzia pilastro 4	14		momento dinerzia pilastro 4
K T (KN/m)	49218.75	rigidezza traslante telaio 1	KT		rigidezza traslante telaio 5
1 (Kreini)	43218,75	ingidezza trastante telalo 1	1 1	221404,30	ngioezza trasiante teraro 5
Telaio 2v	2.5	pilastri che individuano il telaio	Telaio 2o	5-6-7-8	pilastri che individuano il telaio
E	21000,00	modulo di Young	E	21000.00	module di Young
H	3.20	altezza dei pilastri	H	3,20	altezza dei pilastri
1.1	320000,00	momento dinerzia pilastro 1	1.1	720800.00	momento d'inerzia pilastro 1
12	320000.00	momento dinerzia pilastro 2	1.2	720000.00	momento d'inerzia pilastro 2
13	0.00	momento d'inerzia pilastro 3	13		momento d'inerzia pilastro 3
1.4	0,00	momento dineszia pilastro 4	1.4		momento d'inerzia pilastro 4
K_T	49218,75	rigidezza traslante telaio 2	K_T	159960,94	rigidezza traslante telaio 6
Telaio 3v	3.7.9	pilastri che individuano il telaio	Telaio 3o	9-10	pilastri che individuano il telaio
E	21000,00	modulo di Young	E	21000.00	module di Yeung
H	3.20	altezza dei pilastri	H	3.20	altezza dei pilastri
11	320000.00	momento dinerzia pilastro 1	1.1	320000.00	momento d'inerzia pilastro 1
1.2		momento d'inerzia pilastro 2	1.2	320000.00	momento d'inerzia pilastro 2
1.3		momento d'inerzia pilastro 3	1.3	0.00	momento d'inerzia pilastro 3
1.4	0,00	momento dinerzia pilastro 4	1_4	0.00	momento d'inerzia pilastro 4
K.T	135351,56	rigidezza traslante telaio 3	K_T	49218.75	rigidezza traslante telaio 7
Telaio 4v	4-8-10	pilastri che individuano il telaio			
E	21000,00	modulo di Young			
н	3,20	altezza dei pilastri			
1.1	320000,00	momento dinerzia pilastro 1			
1.2		momento d'inerzia pilastro 2			
1.3	720000,00				
1.4	0.00	momento d'inerzia pilastro 4			
KT	135351 56	rigidezza traslante telaio 4			

Riassumendo si trovano le rigidezze di tutti i controventi e le distanze dal punto di origine nel sistema di riferimento scelto.

	Step 2: tabella sinottica controventi e distanze					
Kv1(KN/m)	49218,75	rigidezza traslante contr.vert.1				
Kv2	49218,75	rigidezza traslante contr.vert.2				
Kv3	135351,56	rigidezza traslante contr.vert.3				
Kv4	135351,56	rigidezza traslante contr.vert.4				
dv2 (m)	10,00	distanza orizzontale controvento dal punto O				
dv3	16,00	distanza orizzontale controvento dal punto O				
dv4	22,00	distanza orizzontale controvento dal punto C				
Ko1(KN/m)	221484,38	rigidezza traslante contr.orizz.1				
Ko2	159960,94	rigidezza traslante contr.orizz.2				
Ko3	49218,75	rigidezza traslante contr.orizz.3				
do2	6,00	distanza verticale controvento punto O				
do3	16,00	distanza verticale controvento punto O				

Il terzo passo è quello di calcolare la posizione del centro di massa $G(x_G; y_G)$, per fare questo si suddivide l'impalcato in due figure dove il centro di massa è più semplice da calcolare.

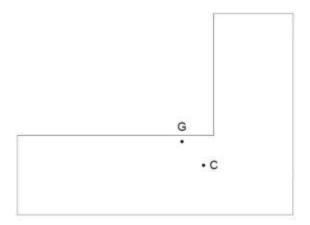
$$X_{G} = \frac{A_1 X_1 + A_2 X_2}{A_{\text{tot}}}$$

$$Y_{\mathsf{G}} = \frac{A_1 Y_1 + A_2 Y_2}{A_{\mathsf{tot}}}$$

Step 3: calcolo del centro di massa						
area 1 (mq)	96,00	misura dell'area superficie 1area 1 (misura)				
x_G1 (m)	8,00	coordinata X centro area 1				
y G1						
area 2	area 2 96,00 misura dell'area superficie 2					
x G2	19,00	coordinata X centro area 2				
y_G2	8,00	coordinata Y centro area 2				
Area tot (mg)	192,00	Area totale impalcato				
ΧG	X G 13,50 coordinata X centro d'area impalcato (centro massa)					
Y G						

Il quarto passo è il calcolo delle coordinate del centro delle rigidezze dopo aver trovato la somma delle rigidezze dei singoli controventi sia orizzontali che verticali.

Step	4: calcolo del	centro di rigidezze e delle rigidezze globali
Ko tot	430664,06	rigidezza totale orizzontale
Kv tot	369140,63	rigidezza totale verticale
X_C (m)	15,27	coordinata X centro rigidezze
Y_C	4,06	coordinata Y centro rigidezze
dd_v1	-15,27	distanze controvento dal centro rigidezze
dd_v2	-5,27	distanze controvento dal centro rigidezze
dd_v3	0,73	distanze controvento dal centro rigidezze
dd v4	6,73	distanze controvento dal centro rigidezze
dd o1	-4,06	distanze controvento dal centro rigidezze
dd o2	1,94	distanze controvento dal centro rigidezze
dd_o3	11,94	distanze controvento dal centro rigidezze
K φ (KN*m)	30315703.13	rigidezza torsionale totale


$$x_C = \frac{\sum_{i=1}^n k_{vi} \cdot d_{vi}}{k_{vi} \cdot d_{vi}}$$

$$x_C = \frac{\sum_{i=1}^{n} k_{vi} \cdot d_{vi}}{k_{v_tot}}$$
$$y_C = \frac{\sum_{i=1}^{n} k_{oi} \cdot d_{oi}}{k_{o_tot}}$$

Qui si calcola anche il valore della rigidezza torsionale calcolando tutte le distanze dei diversi controventi dal centro delle rigidezze.

 $k\varphi = kv_1 \cdot dd_2v_1 + kv_2 \cdot dd_2v_2 + kv_3 \cdot dd_2v_3 + kv_4 \cdot dd_2v_4 + ko_1 \cdot dd_{2o1} + ko_2 \cdot dd_{2o2} + ko_3 \cdot dd_{2o3}$

Dopo aver individuato la posizione del centro di massa ed il centro di rigidezza possiamo verificare se la struttura, sotto l'azione di forze esterne orizzontali, subisce una rotazione o solo traslazione.

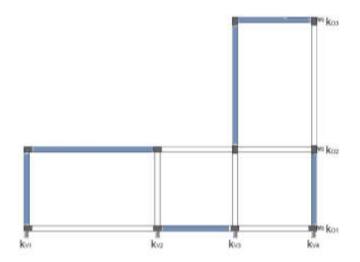
Se i due centri coincidono l'impalcato sotto l'azione di una forza esterna orizzontale trasla, ma se i due centri non coincidono, come in questo caso, oltre alla traslazione si aggiunge una rotazione prodotta dal momento che si forma dalla forza esterna rispetto al centro di rigidezza.

Il quinto passo consiste nell'analisi dei carichi sismici per ricavare la forza sismica che agisce sul centro di massa

Step 5: analisi dei carichi sismici					
q s (KN/mq)	2,50	carico permanente di natura strutturale			
q_p	2,50	sovraccarico permanente			
q_a	5,00	sovraccarico accidentale			
G (KN)	960,00	carico totale permamente			
Q (KN)	960,00	carico totale accidentale			
Ψ	0,80	coefficiente di contemporaneità			
W (KN)	1728,00	Pesi sismici			
С	0,10	coefficiente di intensità sismica			
F (KN)	172,80	Forza sismica orizzontale			

Partendo dai carichi per unità di superficie (qs, qp e qa) si calcola il carico permanente G=(qs + qp)*Atot e il carico accidentale Q= qa*Atot. Successivamente si trovano i pesi sismici W= G+ ψ_{2j} * Q ed infine si calcola la forza sismica orizzontale F=W*c

Negli ultimi due step si considera che la forza sismica agisca prima in direzione x, e poi in direzione y, calcolando le traslazioni orizzontali e verticali e le rotazioni che subisce la struttura.

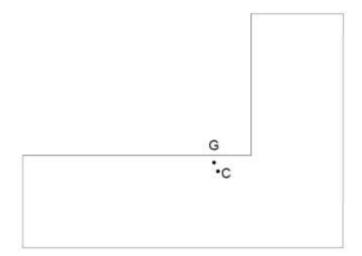

	30200	5
M (KN*m)	-249,33	momento torcente (positivo se antiorario)
u_o (m)	0,00040	traslazione orizzontale
φ	-0,00001	rotazione impalcato (positiva se antioraria)
Fv1 (KN)	6,18	Forza sul controvento verticale 1
Fv2	2,13	Forza sul controvento verticale 2
Fv3	-0,82	Forza sul controvento verticale 3
Fv4	-7,50	Forza sul controvento verticale 4
Fo1	96,26	Forza sul controvento orizzontale 1
Fo2	61,63	Forza sul controvento orizzontale 2
Fo3	14,91	Forza sul controvento orizzontale 3
A.2	172,80	
		88,87
		64,18
		19,75

	Step /	: ripartizione forza sismica lungo Y
M (KN*M)	-305,28	momento torcente
v o (KN)	0,00047	Itraslazione verticale
φ	-0,00001	rotazione impalcato
Fv1 (KN)	30,61	Forza sul controvento verticale 1
Fv2	25,65	Forza sul controvento verticale 2
Fv3	62,36	Forza sul controvento verticale 3
Fv4	54,18	Forza sul controvento verticale 4
Fo1	9,05	Forza sul controvento orizzontale 1
Fo2	-3,13	Forza sul controvento orizzontale 2
Fo3	-5,92	Forza sul controvento orizzontale 3
1.09.00	172,80	
		23,04
		23,04
		63,36
		63,36
		172

Data la posizione del centro delle masse e del centro delle rigidezze, questa struttura sotto l'azione di forze esterne orizzontali parallele all'asse x e parallele all'asse y, subisce sia traslazioni lungo l'asse x e lungo l'asse y, sia rotazioni provocate dal momento torcente e dalla distanza dei due centri, poiché le forze orizzontali vengono applicate nel centro di massa.

Seconda parte

Nella seconda parte dell'esercitazione, modificando le rigidezze dei telai, si rende tutto l'impalcato più simmetrico, avvicinando il più possibile il centro di massa con il centro delle rigidezze.


Si ipotizza che il nuovo impalcato sia formato da telai semplici e telai Shear-Type (rappresentati in azzurro) e si calcolano le rigidezze.

Per i telai shear- type viene utilizzata la formula $K = \frac{12E}{h^3} \sum I_i$ mentre per i telai con il traverso flessibile si usa la formula $K = \frac{3E}{h^3} \sum I_i$

		Step 1: calcolo delle rig	idezze traslanti dei controven	ti dell'edific	lo .
Telalo 1v	1.5	pilastri che individuano il telaio	Telaio 1o	1234	plastri che individuano il telaio
E (N/mmg)	21000.00	modulo di Young	E	21000.00	medule di Young
H (m)	3,20	altezza dei pilastri	н	3.20	altezza dei pilastri
1.1 (cm ⁴)	320000.00	momento dinerzia pilastro 1	1.1	720000.00	momento dinerzia pilastro 1
1.2	320000.00	momento d'inerzia pilastro 2	1.2	720000.00	momento d'inerzia pilastro 2
1.3	0.00	momento d'inerzia pilastro 3	1.3	720000,00	momento d'inerzia pilastro 3
14	0.00	momento d'inerzia pilastro 4	1.4		momento d'inerzia pilastro 4
(_T (KN/m)	49218,75	rigidezza traslante telaio 1	K.T		rigidezza traslante telaio 5
Telaio 2v	2.6	pilastri che individuano il telaio	Tetalo 2o	5-6-7-8	pilastri che individuano il telaio
E	21000,00	modulo di Young	E	21000,00	modulo di Young
H	3,20	altezza dei pilastri	н	3,20	altezza dei pilastri
1.1	320000.00	momento d'inerzia pilastro 1	1.1	720000.00	momento dinerzia pilastro 1
1.2	320000.00	momento d'inerzia pilastro 2	1.2	720000,00	momento dinerzia pilastro 2
1.3	0.00	momento d'inerzia pilastro 3	1.3	320000,00	momento d'inerzia pilastro 3
1.4	0,00	momento dinerzia pilastro 4	1.4	320000,00	momento dinerzia pilastro 4
K.T	12384,69	rigidezza traslante telaio 2	KT	123046,88	rigidezza traslante telaio 6
Telaio 3v	3.7.9	pilastri che individuano il telaio	Tetalo 3o	9-10	pilastri che individuano il telaio
E	21000,00	modulo di Young	E	21000,00	modulo di Young
H	3,20	altezza dei pilastri	н	3,20	altezza dei pilastri
1_1	320000,00	momento d'inerzia pilastro 1	1.1	320000.00	momento dinerzia pilastro 1
1.2	720000,00	momento d'inerzia pilastro 2	1_2	320000,00	momento d'inerzia pilastro 2
1_3	720000.00	momento d'inerzia pilastro 3	1_3	0.00	momento d'inerzia pilastro 3
1.4	0,00	momento d'inerzia pilastro 4	1.4	0,00	momento dinerzia pilastro 4
K_T	116894,53	rigidezza traslante telaio 3	K.T	49218,75	rigidezza traslante telaio 7
Telaio 4v	4-8-10	pilastri che individuano il telaio			
E	21000,00	modulo di Young			
H	3,20	altezza dei pilastri			
1.1	320000,00	momento d'inerzia pilastro 1			
1.2	720000,00	momento d'inerzia pilastro 2			
1_3	720000,00	momento d'inerzia pilastro 3			
1.4	0,00	momento d'inerzia pilastro 4			
KT	93823.24	rigidezza traslante telaio 4	- 21		

A questo punto si ricalcola la posizione del centro delle rigidezze, con le stesse formule precedentemente usate, e si nota che esso si è avvicinato molto al centro di massa.

Step	4: calcolo del	centro di rigidezze e delle rigidezze globali
Ko tot	310693.36	rigidezza totale orizzontale
Kv tot	272241.21	rigidezza totale verticale
X_C (m)	13,78	coordinata X centro rigidezze
Y_C	5,39	coordinata Y centro rigidezze
(44) S		557
dd_v1	-13,78	distanze controvento dal centro rigidezze
dd v2	-3,78	distanze controvento dal centro rigidezze
dd_v3	2,22	distanze controvento dal centro rigidezze
dd v4	8,22	distanze controvento dal centro rigidezze
dd o1	-5,39	distanze controvento dal centro rigidezze
dd o2	0,61	distanze controvento dal centro rigidezze
dd_o3	10,61	distanze controvento dal centro rigidezze
K φ (KN*m)	26045533.52	rigidezza torsionale totale

Dopo aver calcolato i carichi dovuti al solaio, si trova la forza sismica orizzontale (F)

Step 5: analisi dei carichi sismici					
q_s (KN/mq)	2,50	carico permanente di natura strutturale			
q_p	2,50	sovraccarico permanente			
q_a	5,00	sovraccarico accidentale			
G (KN)	960,00	carico totale permamente			
Q (KN)	960,00	carico totale accidentale			
¥	0,80	coefficiente di contemporaneità			
W (KN)	1728,00	Pesi sismici			
С	0,10	coefficiente di intensità sismica			
F (KN)	172,80	Forza sismica orizzontale			

Ed infine negli ultimi due step si considera che la forza sismica agisca prima in direzione x, e poi in direzione y, calcolando le traslazioni orizzontali e verticali e le rotazioni che subisce la struttura.

	Step 6	: ripartizione forza sismica lungo X	Step 7: ripartizione forza sismica lungo Y		
M (KN*m)	-19,01	momento torcente (positivo se antiorario)	M (KN*M)	-48,38	momento torcente
u_o (m)	0,0006	traslazione orizzontale	v_o (KN)	0,00063	traslazione verticale rotazione impalcato
φ	0,00000	rotazione impalcato (positiva se antioraria)	Fv1 (KN)	32,50	Forza sul controvento verticale 1
Fv1 (KN)	0,49	Forza sul controvento verticale 1	Fv2	7.90	Forza sul controvento verticale 1
Fv2	0,03	Forza sul controvento verticale 2	Fv3	73,71	Forza sul controvento verticale 3
Fv3	-0,19	Forza sul controvento verticale 3	Fv4	58,12	Forza sul controvento verticale 4
Fv4	-0,56	Forza sul controvento verticale 4	Fo1	1,39	Forza sul controvento orizzontale 1
Fo1	77,53	Forza sul controvento orizzontale 1	Fo2	-0,14	Forza sul controvento orizzontale 2
Fo2	68,38	Forza sul controvento orizzontale 2	Fo3	-0,97	Forza sul controvento orizzontale 3
Fo3	26,99	Forza sul controvento orizzontale 3		172,51	
1.72	172,69	10 × 40 × 60 × 60 × 60 × 60 × 60 × 60 × 6			31,24
		76,99			7,81
		68,44			74,20
		27,37			59,55
		172,80			172

Data la posizione del centro delle masse e del centro delle rigidezze, questa struttura sotto l'azione di forze esterne orizzontali parallele all'asse x e parallele all'asse y, subisce solo traslazioni lungo l'asse x e lungo l'asse y, ma le rotazioni restano trascurabili.