DIMENSIONAMENTO GRATICCIO

Per dimensionare il graticcio inizialmente per un primo dimensionare considero una superfice piana dividendola in parti di dimensioni massime di 0,5 m.

La superfice piana mi permette di trovare le sollecitazioni a flessioni massime in entrambi gli assi che mi serviranno per ottenere un primo dimensionamento delle travi del graticcio.

- (1) Creo il modello di sap da un template di "Grid Only"
 Dovendo creare una superfice piana mi bastano 2 punti sull'asse X e 2 punti sull'asse Y (1 su Z). La dimensione del graticcio che realizzerò sarà di 15 x 15 x 1
- (2) Modello un'area con il comando "Draw rectangular area"
- (3) Divido la superfice in + elementi (+ gestibile & calcoli più accurati) di dimensioni massime di 0,5 x 0,5 m .

Selezione superfice \rightarrow Edit \rightarrow Edit Areas \rightarrow Divide Areas \rightarrow spunto la 2° e inserisco i valori 0,5 m e 0,5 m.

(4) Inserisco i vincoli in prossimità degli angoli a una distanza di 2 metri dal bordo

- (5) Considerando 5 piani di peso 10 KN/m² (+ 2 KN/m² circa di carico di sicurezza dovuto ai vari coefficienti) abbiamo un peso per ogni solaio di [12 KN/m² * (15m * 15m)]= 2700 KN Moltiplicando 14700*5 abbiamo il peso del solai che è uguale a 13500 KN.
- (6) Definisco il load pattern \rightarrow Carico shell
- (7) Definisco Materiale \rightarrow C35/45

(8) Definisco sezione \rightarrow define \rightarrow section properties \rightarrow area sections \rightarrow

Section Name Shell		Display Color
Section Notes Modify	y/Show	
Туре	Thickness	
🔿 Shell - Thin	Membrane	1,
Shell - Thick	Bending	1,
O Plate - Thin	Material	
O Plate Thick	Material Name	+ C35/45
O Membrane	Material Apple	0.
O Shell - Layered/Nonlinear	Time Dependent Propertie	
Modify/Show Layer Definition	Set Time De	pendent Properties
Concrete Shell Section Design Parameters	Stiffness Modifiers	Temp Dependent Properties
Modify/Show Shell Design Parameters	Set Modifiers	Thermal Properties

(9) Assegno sezione a Area

(10) Assegno carico a Area di 60 KN/m²

S Assign Area Uniform Load	5	×							
General	1								
Load Pattern	Carico shell	~ ·							
Coordinate System	GLOBAL	2							
Load Direction	Gravity	2							
Uniform Load									
Load	60	kN/m²							
Options									
 Add to Existing Loads 	O Add to Existing Loads								
Replace Existing Loads									
O Delete Existing Loads									
Rese	t Form to Default Values Close Apply]							

(11) Faccio partire l'analisi solo con il carico shell

					Click to:
Case Name	Type		Status	Action	Run/Do Not Run Case
MODAL	Modal		Not Run Not Run	Do Not Run Do Not Run	Show Case
Carico shell Linear Static			Not Run		Delete Results for Case
					Run/Do Not Run All
					Delete All Results
					Show Load Case Tree
nalysis Monitor Options		Show Message	s after Run		Model-Alive
Always Show		Only if Error	s		Run Now
) Never Show		If Errors or	Warnings		
Show After 4	seconds	Always			OK Cancel

(12) Individuo i momenti massimi in entrambi i versi andando su "show forces/Stresses" → Shell → confronto i "component" M11 e M22.

MIN=-907,803, MAX=907,803, Right Click on any Area Element for detailed diagram

MIN=-907,804, MAX=907,803, Right Click on any Area Element for detailed diagram

Ps. Essendo la struttura simmetrica in entrambi gli assi i momenti massimi e minimi sono ugali

- (13) Una volta individuato il momento massimo che è 907,803 KN possiamo iniziare a fare il primo dimensionamento sulla tabella Excel
- (14) Considerando che nell'analisi sto considerando un passo strutturale di un metro tra una trave e l'altra manterrò in considerazione il momento di 907,803 KNm se invece avessi voluto considerare un passo strutturale di 1,5 o 2 m avrei dovuto moltiplicare il Mmax per ½ o *2 a seconda dell'interasse
- (15) Invece Carico strutturale \rightarrow (60 KN/m² *(15m*15m))/4 = 3375

M _{max} (KN*m)	f _{yk} (N/mm ²)	f _{yd} (N/mm ²)	f _{ck} (N/mm ²)	f _{cd} (N/mm ²)	β	r	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)
907,80	450,00	391,30	35,00	19,83	0,43	2,33	40,00	78,68	5,00	83,68
950,00	450,00	391,30	35,00	19,83	0,43	2,33	40,00	80,48	5,00	85,48
3907,80	450,00	391,30	35,00	19,83	0,43	2,33	40,00	163,23	5,00	168,23

(16) Realizzo la struttura del graticcio e inserisco i vincoli impostati in precedenza

- (17) Realizzo la sezione calcolata sulla tabella Excel che e di dimensioni 40 cm x 170 cm
- (18) Definisco il materiale C 35/45
- (19) Definisco il load pattern GR (0) e PP (1)
- (20) Assegno carico distribuito al centro = 60/2 #perche entrambi le travi sono travi primarie | invece nei segmenti laterali = 30/2
- (21) Verifico che i carichi assegnati siano esatti → faccio partire l'analisi e verifico che le reazioni vincolari di GR siano uguali al carico dei 5 piani superiori =13500
- (22) Creao una combinazioni di carichi che PP (peso proprio) GR (peso carico)

	(Oser-Generated)	COMB1		
Notes		Me	odify/Show Notes	
Load Combination Type		Range A	dd	~
Options				
Convert to User Loa	d Combo Create Noni	inear Load Cas	e from Load Combo	
ofine Combination of Los	d Case Results			
child combination of Loa	a case results			
Load Case Name	Load Case Type	Mode	Scale Factor	
Load Case Name PP	Load Case Type	Mode	Scale Factor 1,3	
Load Case Name PP GR	Load Case Type Uinear Static Linear Static	Mode	Scale Factor	
Load Case Name PP GR PP	Load Case Type Unear Static Unear Static Unear Static	Mode	Scale Factor 1,3 1 1,3 1 1,3	Add
Load Case Name PP GR PP	Load Case Type Ulnear Static Ulnear Static Ulnear Static	Mode	Scale Factor 1,3 1 1,3 1 1,3	Add Modify
Load Case Name PP GR PP	Load Case Type Unear Static Linear Static Linear Static Linear Static	Mode	Scale Factor 1,3 1 1,3 1 1,3	Add Modify Delete

(23) Faccio partire l'analisi e controllo i momenti della combo1 (PP+GR)

Il momento massimo è di 1680,04 che molto minore al momento che ho considerato per il dimensionamento.

·												-
	M _{max} (KN*m)	f _{yk} (N/mm²)	f _{yd} (N/mm²)	f _{ck} (N/mm ²)	f _{cd} (N/mm ²)	β	r	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	
	907,80	450,00	391,30	35,00	19,83	0,43	2,33	40,00	78,68	5,00	83,68	
	3907,80	450,00	391,30	35,00	19,83	0,43	2,33	40,00	163,23	5,00	168,23	
	2000,00	450,00	391,30	35,00	19,83	0,43	2,33	40,00	116,78	5,00	121,78	
	1400,00	450,00	391,30	35,00	19,83	0,43	2,33	40,00	97,70	5,00	102,70	Γ
		450,00	391,30	35,00	19,83	0,43	2,33	40,00	0,00	5,00	5,00	
			-									

(24) Faccio varie verifiche per trovare la sezione adatta al graticcio

(26) Adesso andiamo a verificare la torsione delle travi dove il valore massimo è di 75,54

Con la tabella Excel andiamo a verificare se la torsione.

M _t (KNm)	f _{ck} (N/mm ²)	f _{tk} (N/mm ²)	f _{td} (N/mm ²)	a (cm)	b (cm)	a/b	α	τ _{max} (N/mm ²)
75,54	35,0	4,38	2,92	40,0	100,0	0,4	3,72	1,89

La sezione è verificata anche a torsione