Esercitazione 2_Dimensionamento di un graticcio_Alessandro Lorenzi

Per dimensionare un graticcio di dimensioni 18 x 24 m che porta il peso di 6 piani superiori.

Inizio considerando il modello di piastra continua, per poi procedere, dopo determinati calcoli e ragionamenti a definire quello che sarà il graticcio vero e proprio 18x24 m.

1) Creo la griglia da cui partire

(New Model - Grid Only)

Quick On	u Lines									
Cartesian	Cylindrical									
Coordin	nate System Nam	e								
GLC	DBAL									
Number	Number of Grid Lines									
X dire	ction	2								
Y dire	ction	2								
Z dire	ction	1								
Grid Sp	acing									
X dire	ction	18,								
Y dire	ction	24								
Z dire	ction	3,								
First Gr	id Line Location									
X dire	ction	0,								
Y dire	ction	0,								
Z dire	ction	0,								

2) Disegno la superficie

(Draw Poly Area) 3) Assegno i vincoli cerniera ai 4 spigoli (Assign-Joint-Restraints)

4) Seleziono e divido la superficie appena creata in aree quadrate di 50 cm x 50 cm (Edit-Edit Areas-Divide Areas)

5) Definisco il carico agente sulle superfici e lo nomino CARICO SHELL con peso proprio=0

(Define-Load Patterns)

6) Definisco il materiale da attribuire alle sezioni.

Scelgo in questo caso di lavorare con il calcestruzzo C45/55

(Define-Materials-Add new materials)

Region	Italy	~
Material Type	Concrete	~
Standard	UNI EN 206-1:2006 e UNI 11104:2004	~
Grade	C45/55	~

7) Definisco le sezioni che costituiscono la struttura, modificando il tipo (SHELL THICK) e le caratteristiche dello spessore

MEMBRANE=1

BENDING=1

(Define-Section Properties-Area Section-Add new section)

Section Name	SHELL	SHELL								
Section Notes	Modify/S	Show								
Type		Thickness								
O Shell - Thin		Membrane	1							
Shell - Thick		Bending	1							
O Plate - Thin		Material								
O Plate Thick		Material Name	+ C45/55 ~							
O Membrane		Material Angle	0,							
O Shell - Layered/No	ninear	Time Dependent Proper	ties							
Modify/Sh	ow Layer Definition	Set Time Dependent Properties								
Concrete Shell Section D	lesign Parameters	Stiffness Modifiers	Temp Dependent Properties							
Modify/Show !	Shell Design Parameters	Set Modifiers	Thermal Properties							

8) Assegno alle superfici le sezioni create in precedenza

(Assign-Area-Sections)

9)Assegno alle superfici il carico.

12 KN x 6 piani =72 KN/m2

(Assign-Area Loads-Uniform Shell)

Load Pattern	CARICO SHELL	2
Coordinate System	GLOBAL	~
Load Direction	Gravity	~
Jniform Load		
Load	72	kN/m²
Options		
O Add to Existing Load	ads	
Replace Existing Lo	ads	
O Delete Existing Loa	ds	
R	eset Form to Default Values	;
	Class	hanhu

11) Avviata l'analisi, pongo attenzione su M11 E M22, di cui prendo il valore più grave (-5822,265 KNm)

12) Apro la tabella Excel "dimensionamento a flessione" e sostituisco al valore del Mmax con il dato ottenuto dal grafico, cercando di tenere conto che non sono stati calcolati peso proprio e che il graticcio non è una piastra continua.

	A	В	С	D	E	F	G	H	- I	J	K	L	M	N	0	Р	Q	R	S	Т	U
1	interasse (m)	q _s (KN/m ²)	q _p (KN/m ²)	q _a (KN/m ²)	q _u (KN/m)	luce (m)	M _{max} (KN*m)	fyk (N/mm ²)	fyd (N/mm2)	f _{ck} (N/mm ²)	f _{cd} (N/mm ²)	β	r	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	н	H/I	area (m2)	peso unitario (k
2																					
3	4,00	3,42	2,56	2,00	45,14	8,00	6000,00	450,00	391,30	35,00	19,83	0,43	2,33	30,00	233,56	5,00	238,56	55,00	0,30	0,17	4,13
4	10,00	3,42	2,56	2,00	112,86	8,00	9000,00	450,00	391,30	35,00	19,83	0,43	2,33	40,00	247,72	5,00	252,72	52,00	0,07	0,21	5,20
5	10,00	2,00	2,00	3,00	101,00	8,00	12000,00	450,00	391,30	35,00	19,83	0,43	2,33	40,00	286,05	5,00	291,05	80,00	0,10	0,32	8,00

13) Con i dati ottenuti inizio la progettazione del graticcio

(Draw Special Joint)

 14) Creo la nuova sezione in calcestruzzo C45/55 che avrà come nuove dimensioni 2,9 m x 0,4 m (Define-Section Properties-Frame Section-Add new Properties)
15) Disegno la nuova griglia

(Draw Frame e Replicate Asta)

16) Assegno i vincoli agli spigoli della nuova griglia

(Assign-Joint-Restraints)

17) Si frammenta la struttura per far sì che si creino dei nodi rigidi, grazie ai quali il graticcio può funzionare

(Edit-Edit Lines-Divide Frames)

18) Assegno il nuovo profilo alla struttura (Assign-Frame-Frame Sections)

19) Area tot. Piano: $18 \text{ m} \times 24 \text{ m} = 432 \text{ m}2$ Carico dei 6 piani: $12 \text{ KN/m2} \times 6$ piani = 72 KN/m2Peso di tutti i piani per area tot.: $432 \text{ m}2 \times 72 \text{ KN/m2} = 31104 \text{ KN}$

72 KN/m2 x 1,5 m = 108 KN/m - carico lineare totale

108 KN/m: $2 = 54 \text{ KN/m} - \text{carico lineare distribuito su tutte le travi TRANNE quelle di bordo.$

108 KN/m : 4 = 27 KN/m – carico lineare distribuito sulle travi di bordo.

(Define- Load Patterns)

20) Assegno alla superficie il carico lineare distribuito

CARICO GR= 54 KN/m

21)Assegno alle travi di bordo il carico lineare distribuito

22)Inserisco anche il carico dovuto al peso proprio e creo la combinazione tra i carichi del peso proprio e il carico del graticcio e faccio partire l'analisi.

23) Trovo il momento massimo su M33 di 2800 KN in corrispondenza delle aste esterne

24) A questo punto con il nuovo momento massimo e il graticcio disegnato con il passo di travi a 1,5 m e travi 0,4 x 1,7 m, vado a verificare la struttura.