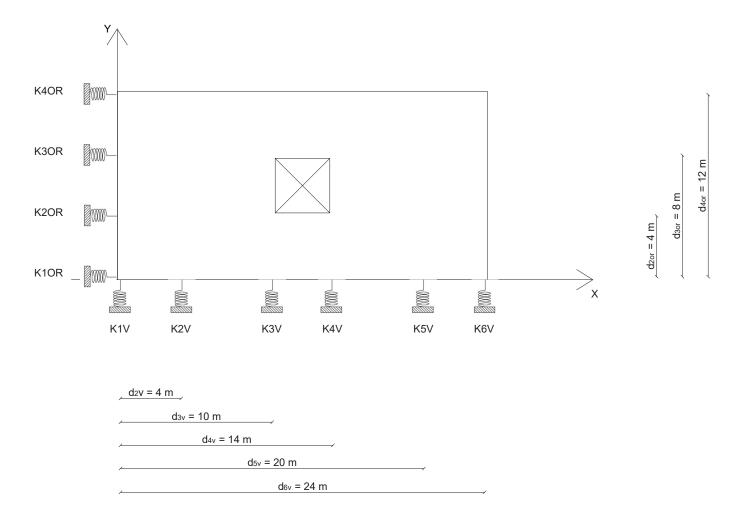

ESERCITAZIONE 3

Verifica di un edificio intelaiato in CA in zona sismica

L'esercitazione ha lo scopo di mettere in evidenza attraverso il metodo delle rigidezze, come una forza orizzontale (vento o sisma) venga ripartita sui diversi telai che compongono una struttura.

Il modello teorico a cui facciamo riferimento è quello del *telaio shear-type*, quindi con travi con rigidezza assiale e flessionale infinita e pilastri con rigidezza assiale infinita.


Andiamo quindi a studiare il comportamento dell'edificio in cemento armato precedentemente analizzato: individuiamo nelle due direzioni (verticale e orizzontale) i telai piani che compongono la struttura e che, oltre a trasmettere i carichi verticali in fondazione, fungono da controventi in grado di sopportare le azioni orizzontali.

L'impalcato è composto da 10 telai piani (6 lungo l'asse X e 4 lungo l'asse Y), con pilastri di sezione 50X50 cm e altezza h=2,7 m:

- Telaio 1V pilastri 1,7,13,19
- Telaio 2V pilastri 2,8,14,20
- Telaio 3V pilastri 3,9,15,21
- Telaio 4V pilastri 4,10,16,22
- Telaio 5V pilastri 5,11,17,23
- Telaio 6V pilastri 6,12,18,24
- Telaio 1OR pilastri 1,2,3,4,5,6
- Telaio 2OR pilastri 7,8,9,10,11,12
- Telaio 3OR pilastri 13,14,15,16,17,18
- Telaio 4OR pilastri 19,20,21,22,23,24

I controventi possono essere raffigurati tramite *molle*, in quanto rappresentano dei vincoli cedevoli elasticamente:

Calcoliamo la rigidezza k dei controventi. Avendo definito il comportamento dei telai assimilabile al model lo shear-type di cui sappiamo che la rigidezza dei pilastri è $k = \frac{12 \, EI}{h^2}$, possiamo calcolare la rigidezza dei controventi come somma delle rigidezze dei pilastri che li compongono: $k_{controvento} = \frac{12E}{h^2} \sum_{i=1}^{n} Ii$

Ad esempio $K1V = 12E/h^3 * (I1+I7+I13+I19)$

con E modulo elastico = 33346 MPa per pilastri in CA h altezza pilastro = 2.7 m I momento d'inerzia $[I_{rettangolo} = (b*h^3)/12]$

NB: il momento d'inerzia sarà diverso a seconda dell'orientamento dei pilastri.

Step 1: calcolo delle rigidezze traslanti dei controventi dell'edificio

Telaio 1v	1-7-13-19	pilastri che individuano il telaio	
E (N/mmq)	33346,00	modulo di Young	
H (m)	2,70	altezza dei pilastri	
I_1 (cm ⁴)	520833	momento d'inerzia pilastro 1	
I_7	520833	momento d'inerzia pilastro 7	
I_13	520833	momento d'inerzia pilastro 13	
I_19	520833	momento d'inerzia pilastro 19	
K_T (KN/m)	423538,05	rigidezza traslante telaio 1	
Telaio 2v	2-8-14-20	pilastri che individuano il telaio	
Telaio 2v E	2-8-14-20 33346,00	pilastri che individuano il telaio modulo di Young	
		11	
Е	33346,00	modulo di Young	
E H	33346,00 2,70	modulo di Young altezza dei pilastri	
E H I_2	33346,00 2,70 520833,30	modulo di Young altezza dei pilastri momento d'inerzia pilastro 2	
E H I_2 I_8	33346,00 2,70 520833,30 520833,30	modulo di Young altezza dei pilastri momento d'inerzia pilastro 2 momento d'inerzia pilastro 8	
E H I_2 I_8 I_14	33346,00 2,70 520833,30 520833,30 520833,30	modulo di Young altezza dei pilastri momento d'inerzia pilastro 2 momento d'inerzia pilastro 8 momento d'inerzia pilastro 14	

Telaio 3v	3-9-15-21 pilastri che individuano il telaio	
E	33346,00	modulo di Young
Н	2,70	altezza dei pilastri
I_3	520833	momento d'inerzia pilastro 3
I_9	520833	momento d'inerzia pilastro 9
I_15	520833	momento d'inerzia pilastro 15
I_21	520833	momento d'inerzia pilastro 21
ΚT	423538.05	rigidezza traslante telajo 3

Telaio 4v	4-10-16-22	pilastri che individuano il telaio	
E	33346,00	modulo di Young	
Н	2,70	altezza dei pilastri	
I_4	520833	momento d'inerzia pilastro 4	
I_10	520833	momento d'inerzia pilastro 10	
I_16	520833	momento d'inerzia pilastro 16	
I_22	520833	momento d'inerzia pilastro 22	
K_T	423538,05	rigidezza traslante telaio 4	

Telaio 5v	5-11-17-23	pilastri che individuano il telaio	
E	33346,00	modulo di Young	
Н	2,70	altezza dei pilastri	
I_5	520833,30	momento d'inerzia pilastro 5	
I_11	520833,30	momento d'inerzia pilastro 11	
I_17	520833,30	momento d'inerzia pilastro 17	
I_23	520833,30	momento d'inerzia pilastro 23	
ΚT	423538.05	rigidezza traslante telaio 5	

Telaio 6v	6-12-18-24	pilastri che individuano il telaio	
E	33346,00	modulo di Young	
Н	2,70	altezza dei pilastri	
I_6	520833	momento d'inerzia pilastro 6	
I_12	520833	momento d'inerzia pilastro 12	
I_18	520833	momento d'inerzia pilastro 18	
I_24	520833	momento d'inerzia pilastro 24	
K_T	423538,05	rigidezza traslante telaio 6	

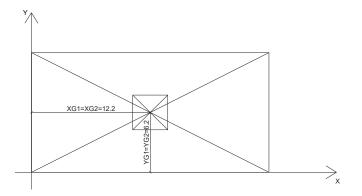
Telaio 1or	1-2-3-4-5-6	pilastri che individuano il telaio
E	33346,00	modulo di Young
Н	2,70	altezza dei pilastri
L_1	520833,30	momento d'inerzia pilastro 1
I_2	520833,30	momento d'inerzia pilastro 2
I_3	520833,30	momento d'inerzia pilastro 3
I_4	520833,30	momento d'inerzia pilastro 4
I_5	520833,30	momento d'inerzia pilastro 5
I_6	520833,30	momento d'inerzia pilastro 6
ΚT	635307.08	rigidezza traslante telajo 7

Telaio 2or	7-8-9-10-11-12	pilastri che individuano il telaio
E	33346,00	modulo di Young
Н	2,70	altezza dei pilastri
I_7	520833,30	momento d'inerzia pilastro 7
I_8	520833,30	momento d'inerzia pilastro 8
I_9	520833,30	momento d'inerzia pilastro 9
I_10	520833,30	momento d'inerzia pilastro 10
I_11	520833,30	momento d'inerzia pilastro 11
I_12	520833,30	momento d'inerzia pilastro 12
ΚТ	635307 08	rigidezza traslante telajo 8

Telaio 3or	13-14-15-16-17-18	pilastri che individuano il telaio
E	33346,00	modulo di Young
Н	2,70	altezza dei pilastri
I_13	520833,30	momento d'inerzia pilastro 1
I_14	520833,30	momento d'inerzia pilastro 2
I_15	520833,30	momento d'inerzia pilastro 3
I_16	520833,30	momento d'inerzia pilastro 4
I_17	520833,30	momento d'inerzia pilastro 5
I_18	520833,30	momento d'inerzia pilastro 5
ΚT	635307,08	rigidezza traslante telaio 9

Telaio 4or	19-20-21-22-23-24	pilastri che individuano il telaio
E	33346,00	modulo di Young
Н	2,70	altezza dei pilastri
I_19	520833,30	momento d'inerzia pilastro 1
I_20	520833,30	momento d'inerzia pilastro 2
I_21	520833,30	momento d'inerzia pilastro 3
I_22	520833,30	momento d'inerzia pilastro 4
I_23	520833,30	momento d'inerzia pilastro 5
I_24	520833,30	momento d'inerzia pilastro 5
K_T	635307,08	rigidezza traslante telaio 10

Step 2: tabella sinottica controventi e distanze


Kv1(KN/m)	423538,05	rigidezza traslante contr.vert.1
Kv2	423538,05	rigidezza traslante contr.vert.2
Kv3	423538,05	rigidezza traslante contr.vert.3
Kv4	423538,05	rigidezza traslante contr.vert.4
Kv5	423538,05	rigidezza traslante contr.vert.5
Kv6	423538,05	rigidezza traslante contr.vert.6
dv2 (m)	4,00	distanza orizzontale controvento dal punto O
dv3	10,00	distanza orizzontale controvento dal punto O
dv4	14,00	distanza orizzontale controvento dal punto O
dv5	20,00	distanza orizzontale controvento dal punto O
dv6	24,00	distanza orizzontale controvento dal punto O
Ko1(KN/m)	635307,08	rigidezza traslante contr.orizz.1
Ko2	635307,08	rigidezza traslante contr.orizz.2
Ko3	635307,08	rigidezza traslante contr.orizz.3
Ko4	635307,08	rigidezza traslante contr.orizz4
do2	4,00	distanza verticale controvento punto O
do3	8,00	distanza verticale controvento punto O
do4	12,00	distanza verticale controvento punto O

• Step 3_Calcolo del centro di massa

Troviamo le coordinate del centro di massa applicando la seguente formula:

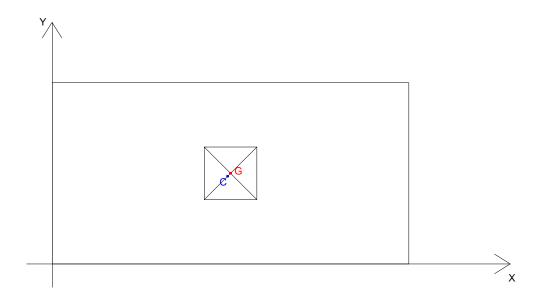
$$X_{4} = \frac{A_{\lambda} X_{A} - A_{z} X_{z}}{A_{\lambda} - A_{z}}$$

$$Y_{4} = \frac{A_{\lambda} Y_{A} - A_{z} Y_{z}}{A_{\lambda} - A_{z}}$$

Tenendo presente che dobbiamo sottrarre all'impalcato il vuoto della scala.

Step 3: calcolo del centro di massa

area_1 (mq)	302,56	misura dell'area superficie 1area 1 (misura)
x_G1 (m)	12,20	coordinata X centro area 1
y_G1	6,20	coordinata Y centro area 1
area_2 (mq)	12,96	misura dell'area superficie 1area 1 (misura)
x_G2 (m)	12,20	coordinata X centro area 1
y_G2	6,20	coordinata Y centro area 1
Area tot (mq)	289,60	Area totale impalcato
X_G	12,20	coordinata X centro d'area impalcato (centro massa)
Y_G	6,20	coordinata Y centro d'area impalcato (centro massa)


• Step 4_Calcolo del centro delle rigidezze:

Per determinare le coordinate del centro C possiamo sfruttare la stessa formula vista per il centro di massa riadattandola: il centro delle rigidezze avrà infatti coordinate pari alla sommatoria del prodotto fra le rigidezze di ogni controvento per le rispettive distanze, diviso la rigidezza totale

$$X_C = \frac{\sum K_{vi}*d_{vi}}{K_{v_{tot}}}$$
 ; $Y_C = \frac{\sum K_{oi}*d_{oi}}{K_{v_{tot}}}$

Step 4: calcolo del centro di rigidezze e delle rigidezze globali

		<u> </u>	
Kv_tot	2541228,31	rigidezza totale orizzontale	
Kor_tot	2541228,31	rigidezza totale verticale	
X_C (m)	12,00	coordinata X centro rigidezze	
Y_C	6,00	coordinata Y centro rigidezze	
dd_v1	-12,00	distanze controvento dal centro rigidezze	
dd_v2	-8,00	distanze controvento dal centro rigidezze	
dd_v3	-2,00	distanze controvento dal centro rigidezze	
dd_v4	2,00	distanze controvento dal centro rigidezze	
dd_v5	8,00	distanze controvento dal centro rigidezze	
dd_v6	12,00	distanze controvento dal centro rigidezze	
dd_o1	-6,00	distanze controvento dal centro rigidezze	
dd_o2	-2,00	distanze controvento dal centro rigidezze	
dd_o3	2,00	distanze controvento dal centro rigidezze	
dd_o4	6,00	distanze controvento dal centro rigidezze	
K_φ (KN*m)	230404699,98	rigidezza torsionale totale	

Confrontando il centro di massa con quello delle rigidezze notiamo che sono molto vicini tra loro; se così non fosse stato avrei dovuto riprogettare i controventi fino ad accorciare il più possibile la loro distanza, in quanto le forze orizzontali ipotizzate agenti in G provocherebbero una rotazione dell'edificio.

• Step 5_ Analisi dei carichi sismici

Per l'analisi dei carichi facciamo riferimento all'esericitazione 2.

Una volta definito il solaio con i suoi carichi per unità di superficie, calcoliamo il carico totale permanente G e il carico totale accidentale Q: G = (qs + qp) Atot; Q = qa*Atot

Utilizziamo la combinazione sismica data dalla norma per definire i pesi sismici: $W = G + \psi_2 Q$

Step 5: analisi dei carichi sismici				
q_s (KN/mq)	8,44	carico permanente di natura strutturale		
q_p	3,12	sovraccarico permanente		
		sovraccarico accidentale		
G (KN)	3347,78	carico totale permamente		
Q (KN)	579,20	carico totale accidentale		
y 0,80 coefficiente di contemporaneità W (KN) 3811,14 Pesi sismici c 0,10 coefficiente di intensità sismica		coefficiente di contemporaneità		
		Pesi sismici		
		coefficiente di intensità sismica		
F (KN) 381,11 Forza sismica orizzontale				

Moltiplicando il peso sismico W per il coefficiente di intensità sismica c, che tiene conto della sismicità del luogo di progettazione dell'edifcio, si ottiene la forza sismica F: F = W * c

• Step 6-7_ Ripartizione forza sismica lungo X e Y

Avendo il centro di massa e il centro delle rigidezze coordinate molto simili, si può notare che non si sviluppa alcuna rotazione, ma solo una piccola traslazione lungo x e lungo y.

Step 6: ripartizione forza sismica lungo X

M (KN*m)	-76,22	momento torcente (positivo se antiorario)	
u_o (m)	0,0001	traslazione orizzontale	
ф	0,0000	rotazione impalcato (positiva se antioraria)	
Fv1 (KN)	1,68	Forza sul controvento verticale 1	
Fv2	1,12	Forza sul controvento verticale 2	
Fv3	0,28	Forza sul controvento verticale 3	
Fv4	-0,28	Forza sul controvento verticale 4	
Fv5	-1,12	Forza sul controvento verticale 5	
Fv6	-1,68	Forza sul controvento verticale 6	
Fo1	96,54	Forza sul controvento orizzontale 1	
Fo2	95,70	Forza sul controvento orizzontale 2	
Fo3	94,86	Forza sul controvento orizzontale 3	
Fo4	94,02	Forza sul controvento orizzontale 4	

287,10

95,28
95,28
95,28
95,28

Step 7: ripartizione forza sismica lungo Y

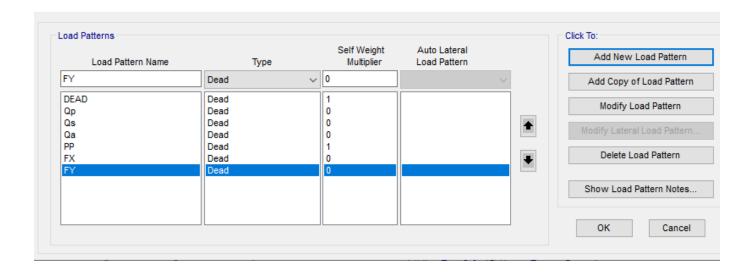
M (KN*M)	-76,22	momento torcente	
v_o (KN)	0,0001	traslazione verticale	
ф	0,0000	rotazione impalcato	
Fv1 (KN)	65,20	Forza sul controvento verticale 1	
Fv2	64,64	Forza sul controvento verticale 2	
Fv3	63,80	Forza sul controvento verticale 3	
Fv4	63,24	Forza sul controvento verticale 4	
Fv5	62,40	Forza sul controvento verticale 5	
Fv6	61,84	Forza sul controvento verticale 6	
Fo1	1,26	Forza sul controvento orizzontale 1	
Fo2	0,42	Forza sul controvento orizzontale 2	
Fo3	-0,42	Forza sul controvento orizzontale 3	
Fo4	-1,26	Forza sul controvento orizzontale 4	

382,37

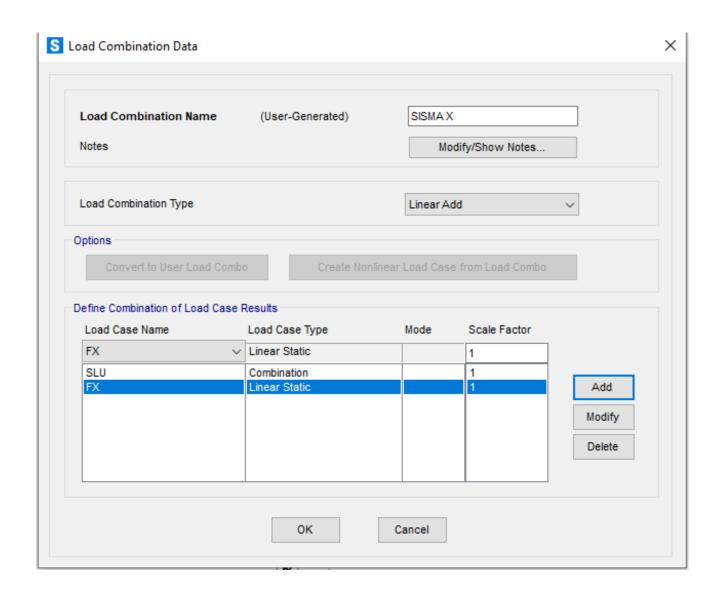
63,52	
63,52	
63,52	
63,52	
63,52	
63,52	

• Step 8_Distribuzione di piano della forza sismica

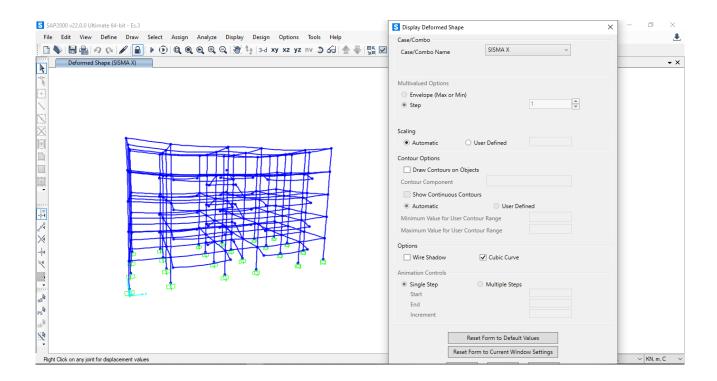
Step 8: ripartizione forza sismica per piano				
		х		у
3	287,10	19,14	382,37	25,49
6	287,10	38,28	382,37	50,98
9	287,10	57,42	382,37	76,47
12	287,10	76,56	382,37	101,97
15	287,10	95,70	382,37	127,46
45				

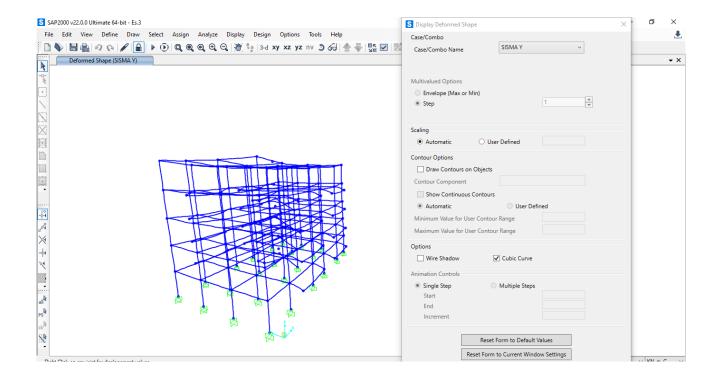

MODELLO

Riprendiamo il modello dell'esercitazione 2 e andiamo a creare dei diaphram diversi per ogni piano, nei quali andremo ad includere il punto rappresentante il centro di massa, su cui poi assegneremo la forza lungo x e lungo y.


Properties of Object

	Properties or object				
		Offset X		12,2	
		Offse	tΥ	6,2	
		Offse	tZ	0,	
					\neg
		1 '			
					\dashv
→ x					


Creiamo i nuovi casi di carico FX e Fy:



Creiamo le combinazioni di carico SISMA X e SISMA Y che includeranno oltre alle forze orizzontali, rispettivamente lungo x e lungo y, anche i pesi verticali definiti nella precedente esercitazione.

Possiamo a questo punto lanciare l'analisi e vedere cosa succede alla configurazione deformata sotto l'azione delle due combinazioni di carico:

Dopo esserci accertati che la struttura non subisca rotazioni ma solamente traslazioni, dobbiamo andare ad effettuare una nuova verifica a pressoflessione come precedentemente fatto nell'esercitazione 2.