ESERCITAZIONE 1

Dimensionamento delle aste tese e compresse di una trave reticolare spaziale

Rappresentiamo e studiamo una trave reticolare tramite SAP2000.

Per prima cosa dobbiamo disegnare un cubo controventato che rappresenta un modulo della nostra trave; per farlo possiamo sfruttare la griglia.

(NB: controllare che le unità di misura siano impostate su KN,m,C)

A partire da questo modulo possiamo copiare e incollare gli elementi lungo le direzioni X e Y fino ad ottenere la reticolare della forma e dimensioni desiderate: nel nostro caso avremo 14 moduli lungo l'asse X (per un totale di 42 m di lunghezza) e 7 moduli lungo Y (21 m).

(NB: non ho selezionato le aste sul piano XZ altrimenti copiando lungo la direzione Y avrei creato delle sovrapposizioni di elementi)

Dopo aver assegnato a tutti gli elementi un'ipotetica sezione (circolare cava "pipe") che andremo poi a cambiare dopo il dimensionamento, impostiamo i rilasci dei momenti in modo da creare delle cerniere interne sui nodi della trave affinché questi non trasmettano il momento, in quanto una trave reticolare è soggetta solamente a sforzo normale.

	Assig	gn	Analyze	Display	Design	Optio	ns	То	ols	Help					
11	*	Joi	int				×	nv	Э	60 🛧 🐳 🛄 🗹 🔀 -					
	1	Fra	ame				F	I,	Fr	ame Sections					
	Ç	Ca	ble			1.	Property Modifiers								
	~	Ter	ndon				×	K,	Material Property Overwrites						
		Ar	ea				×	d.	Releases/Partial Fixity						
	đ	So	lid				×	×	Local Axes Reverse Connectivity						
	×	Lin	nk/Support				•	372							
	٠.	Joi	int Loads				F	Γ.	En	d (Length) Offsets					
	<u>أمًا</u>	Fra	ame Loads				+ +	T.	Insertion Point						
	وبه	Ca	ble Loads						0	utput Stations					
1	~*	Ter	ndon Loads				×	×		D-4- [
	<u>i</u>	Ar	ea Loads				×	PS R	P-	Delta Force					
	#	So	lid Loads				×	lilli*	Path						
		Lin	nk/Support l	Loads		×	4	Te	nsion/Compression Limits						
1	*	Joint Patterns						21.	Hi	nges					
	5	As	sign to Grou	лр	Ctrl+Shi	ft+G		011 11+	Hinge Overwrites						
N II V		Up	odate All Ger	nerated Hi	nge Proper	ties		۲T •%	Lii Lii	Line Springs Line Mass					
-	×_	Cle	ear Display o	of Assigns				12	м	aterial Temperatures					
Ę	1	Co	py Assigns					►.~ ►.~	materiar temperatures						
	iß,	Pa	ste Assigns			1.	Automatic Frame Mesh								
í.	.,	V	11	`					Re	bar Ratio for Creep Analysis					
	-	1						*/	Lo	ad Transfer Options					
	(7						_							

Vincoliamo la struttura assegnando dei vincoli cerniera.

A questo punto dobbiamo definire i carichi che graveranno sulla nostra struttura:

ANALISI DEI CARICHI	
120	PAVIMENTO IN GRES (20 mm) HASSETTO (100 mm) GETTO DI COMPLETAMENTO IN C.A.
TRAVE SECONDARIA IPE	LAMIERA GRECATA HI-BOND ASS/PGOD (0,8000) 120
TRAVE PRINCIPALE IPE	300
	CONTRO SOFFITTO

• Grive primamente stuffvrale (hen):
= lamiera grecata : 0,11
$$\frac{kN}{m^2}$$
 (du catalege)
= soletta : 25 $\frac{kN}{m^2}$ · (0,065 $\pm \frac{4055}{2}$) $wr = 2,32 \frac{kN}{m^2}$
• Grive prima wente une stuffvrale (4ei):
= pan mento (qus) : 0,40 $\frac{kN}{m^2}$
= unassetto : 20 $\frac{kN}{kN^2}$ · 0,4w = 2 $\frac{kN}{m^2}$
= unassetto : 20 $\frac{kN}{kN^2}$ · 0,4w = 2 $\frac{kN}{m^2}$
= unassetto : 20 $\frac{kN}{kN^2}$ · 0,4w = 2 $\frac{kN}{m^2}$
= unassetto : 20 $\frac{kN}{kN^2}$ · 0,4w = 2 $\frac{kN}{m^2}$
= unassetto : 20 $\frac{kN}{kN^2}$ · 0,4w = 2 $\frac{kN}{m^2}$
= unassetto : 20 $\frac{kN}{kN^2}$ · 0,4w = 2 $\frac{kN}{m^2}$
= unassetto : 20 $\frac{kN}{kN^2}$ · 0,4w = 2 $\frac{kN}{m^2}$
= unassetto : 20 $\frac{kN}{kN^2}$ · 0,4w = 2 $\frac{kN}{m^2}$
= unadeuna trainezzii : A_1 60 $\frac{kN}{m^2}$
= Garico variabile (Que):
NTC 20 R : Cat. B - Uff a 3 $\frac{kN}{m^2}$
 $q_{siv} = (4,3-2,43+4,5+4,46+-4,5-3) \frac{kN}{m^2} \simeq 14 \frac{kN}{m^2}$

Dato il carico $q_{SLU} = 14 \text{ KN/m}^2$, moltiplicandolo per l'area di influenza del nodo e per il numero di piani del nostro edificio, stimiamo che sui nodi centrali agirà una forza pari a 500 KN, su quelli laterali sarà circa la metà, 250 KN, e sugli spigoli 125 KN.

	А	В	С	D	E	F	G	н	1	J	
1		L ₁	L ₂	Area	q₅	q _p	qa	q _{solaio}	n _{piani}	Ν	
2		m	m	m2	kN/mq	kN/mq	kN/mq	kN		kN	
3	nodi centrali	3,00	3,00	9,00	2,43	4,16	3,00	125,09	4	500	
4	nodi perimetrali	1,50	3,00	4,50	2,43	4,16	3,00	62,55	4	250	
5	nodi angolari	1,50	1,50	2,25	2,43	4,16	3,00	31,27	4	125	
6											Γ

Applichiamo i carichi al modello di SAP.

A questo punto possiamo lanciare l'analisi e verificare che:

il momento sulle aste sia nullo

Case/Combo		
Case/Combo Name	q ~	
Multivalued Options		
Envelope (Max or Min)		
Step	1	
Display Type		
Force	○ Stress	
Component		
Axial Force	 Torsion 	
O Shear 2-2	O Moment 2-2	
O Shear 3-3	Moment 3-3	
Scaling for Diagram		
 Automatic 		
O User Defined		
Options for Diagram		
Fill Diagram	O Show Values	
Res	et Form to Default Values	
Reset Fo	rm to Current Window Settings	
		V

e di conseguenza anche il taglio.

Dr S Display Frame Forces/Stre Case/Combo Case/Combo Name	q v	× [₩] • • ♥ ♥ ♥ : • • · · · · · · · · · · · · · · · · · ·
Multivalued Options Envelope (Max or Min) Step	1 ×	
Display Type		
Force	○ Stress	
Component		
 Axial Force 	 Torsion 	
Shear 2-2	O Moment 2-2	
O Shear 3-3	O Moment 3-3	
Scaling for Diagram		
 Automatic 		
O User Defined		
Options for Diagram		
 Fill Diagram 	O Show Values	
Reset	Reset Form to Default Values Form to Current Window Settings Close Apply	

L'unico contributo che avremo sarà lo sforzo assiale.

S Display Frame Forces/ Case/Combo	/Stresses	× ^{≱p} ↓
Case/Combo Name	q ~	
Multivalued Options		
Envelope (Max or I	Min)	
Step	1	
Display Type		
Force	⊖ Stress	
Component		
 Axial Force 	 Torsion 	
O Shear 2-2	O Moment 2-2	
O Shear 3-3	O Moment 3-3	
Scaling for Diagram		
 Automatic 		
O User Defined		
Options for Diagram		
 Fill Diagram 	○ Show Values	
	Reset Form to Default Values	
R	leset Form to Current Window Settings	
	OK Close Apply	

Passiamo al pre-dimensionamento.

Una volta effettuata l'analisi possiamo esportare la tabella "Element forces – frames" su Excel. I dati ottenuti dovranno essere filtrati in modo da eliminare le informazioni superflue.

La tabella verrà poi ordinata in due grandi gruppi per le aste in trazione e quelle in compressione.

Per ogni gruppo vengono individuate 4 categorie a seconda dello sforzo normale (circa ogni 200 KN), in modo da ottenere 8 valori (4 per la compressione e 4 per la trazione) per dimensionare le aste.

Procediamo con i calcoli, dai quali otterremo l'area minima (+ l'inerzia minima nel caso delle aste compresse) con la quale possiamo andare a scegliere da sagomario la sezione con area maggiore a quella trovata.

~	
(om	nressione.
00111	pressione.

4	A	в	С	D	E	F	G	н	1	J	К	L	М	N	0	Р	Q	R	S	Т	U	V
1	TABLE: Element Forces - Frames				Calcolo dell'area minima da sforzo di				Calcolo dell'inerzia minima per sforzo di compressione (instabilità euleriana)					Ingegnerizzazione sezione e verifica								
2		Frame	Station	OutputCase	N		N	fyk	¥ m0	fyd	A_min	E	beta	1.1	Lam*	rho_min	I_min	A_design	I_design	rho_min	lam	Profilo
3							kN	N/mm2		N/mm2	cm2	Mpa		m		cm	cm4	cm2	cm4	cm		mm
1	C1						-852,824	235,00	1,05	223,81	38,10	210000,00	1,00	3,00	96,23	3,12	370	39,5	2247	7,54	39,79	219,1*5,9
5	C2	650	0	q	-591,64		-591,64	235,00	1,05	223,81	26,43	210000,00	1,00	3,00	96,23	3,12	257	27,0	1564	7,61	39,42	219,1*4,0
3	C3	408	0	q	-395,31		-395,31	235,00	1,05	223,81	17,66	210000,00	1,00	3,00	96,23	3,12	172	19,1	437	4,78	62,76	139,7*4,5
7	C4	854	0	q	-199,92		-199,92	235,00	1,05	223,81	8,93	210000,00	1,00	4,24	96,23	4,41	174	12,5	192	3,92	108,23	114,3*4,0
3																						

Trazione:

e	А	D	L.	U	C	г	0		1	J	N	L	IVI	IN
				Calcolo	dell'area	minima da	ia da sforzo normale di trazione							
!														
		TABL	E: Elemer	nt Forces - Fra	ames		N	fyk	۷m	f _d	A_min	A_design	Profilo (d*s)	
Ļ		Frame	Station	OutputCase	N		kN	Мра		Мра	cm2	cm2	m	m
;	T1	809	0	q	199,963		199,96	235,00	1,05	223,81	8,93	9,65	88,9	*3,2
i	T2	783	0	q	390,685		390,69	235,00	1,05	223,81	17,46	19,10	139,7	7*4,5
•	Т3	680	0	q	573,82		573,82	235,00	1,05	223,81	25,64	25,70	168,3	3*5,0
1	Т4	720	0	q	700,197		700,20	235,00	1,05	223,81	31,29	33,60	219,1	L*5,0

Per verificare la scelta dei profili dobbiamo andare a cambiare sul modello in SAP la sezione assegnata inizialmente in modo arbitrario con quella dei profili scelti e riavviare di nuovo l'analisi aggiungendo al carico già definito (Q_{SLU}) anche il peso proprio (PP).

Infine effettuiamo la verifica di abbassamento.

In questo caso la combinazione da utilizzare per la definizione del carico sarà:

 $q_{SLE} = (1 \times 2.43 + 0.7 \times 4.16 + 0.7 \times 3) \text{ KN/m}^2 = 7.4 \text{ KN/m}^2$

Come prima andiamo a definire le forze che agiscono sui nodi caricati (moltiplicando il q_{sle} per il numero dei piani e l'area di influenza del nodo interessato), ottenendo dunque: 266.4 KN per i nodi centrali, 133.2 KN per i nodi perimetrali e 66.6 KN per quelli angolari.

Una volta assegnati tali valori al modello di SAP, andiamo a creare una nuova combinazione (PP + Q_{SLE}) e facciamo partire nuovamente l'analisi.

Dobbiamo verificare che l'abbassamento del nodo che ha subito lo spostamento massimo sia inferiore a L/200.

	А	В	С	D	E	F							
1	TABLE: Joint Displacements												
2	Joint OutputCase		CaseType	U1	U2	U3							
3	131	COMB2	Combination	0,002637	-0,000307	-0,035675							

Nel mio caso L= 27 m, quindi 27/200 = 0.135 m. La verifica è quindi soddisfatta.