ES.3 Progetto di un edificio multipiano Inglisa Messina

L'esercitazione prevede la progettazione e il dimensionamento di un edificio multipiano.

Apro un nuovo file e imposto la griglia. Imposto grid lines, 2 per ogni asse x, y e z ed il grid spacing di 6,5 in disezione x, 6 in direzione y e 3,57 in direzione z.

Definisco il materiale (Define_Materials_Add New Materials – "Italy, Concrete, NTC 2008, CLS 28/35").

Definisco le sezioni (Define_Section properties_Frame section), in:

Travi principali: 0.3x0.65 m

Travi secondarie: 0.3x0.40 m

Travi di bordo: 0.3x0.50 m

Pilastri angolari (per tutti e 6 i piani): 0.3x40 m

Pilastri centrali (per tutti e 6 i piani): 0.3x60 m

Pilatri perimetrali (per tutti e 6 i piani): 0.3x50 m

Definisco i Load Pattern

PP (Peso proprio) moltiplicatore di peso proprio =1

Qa (Carico accidentale) moltiplicatore di peso proprio =0

Qp (Carico permanente) moltiplicatore di peso proprio =0

Qs (Carico strutturale) moltiplicatore di peso proprio =0

Definisco la Combinazione di carico COMB1 (Define_Load Combination_Add new combo_linear Add_)

PP moltiplicato per il coefficiente di sicurezza 1,3

Qa moltiplicato per il coefficiente di sicurezza 1,5

Qs moltiplicato per il coefficiente di sicurezza 1,3

Qp moltiplicato per il coefficiente di sicurezza 1,5

Disegno i pilastri e le travi (Draw_Frame/Cable) seguendo lo schema progettato precedentemente.

Assegno le sezioni agli elementi (Assign_Frame Section)

Assegno i vincoli esterni (Assign_Joint_Restraints_Incastro).

Assegno i carichi distribuiti alle travi (Assign_ Frame Loads_ Distribuited) in base all'area di influenza:

Qs = 2 KN/m2

Qp = 3 KN/m2

Qa = 5 KN/m2

Replico (Replicate_Linear_in direzione z: 3,57 m_Increment data_Number:5) il modello disegnato per i 6 piani necessari per il progetto e **assegno** ai pilastri la sezione corretta precedentemente definita.

Disegno le scale definendo le travi a ginocchio e pilastro scala

Impongo la condizione di impalcato rigido (Assign_Joint_Costraints_Define Joint constraints_ Diaphragm_Assign).

Avvio l'analisi (Run Analysis) ed estraggo le tabelle (Analysis results_ Element Output)

Dimensiono prima le Travi principali verificando ogni volta la sezione ottenuta e il peso proprio dell'elemento.

Salvataggio a	utomatico 🧿	⊇⊠%	- (? - -	Ginersi	onamento a l	lissione trav	ials - Modi	rità comp	uribista ~	P	Cerca					$+_{x}$	SARA I	AESSINA (2	. –	0 X
File Hom	ne Inseriso	i Disegno	Layout di pa	igina Fo	irmule D	lati Revi	sione Via	sualizza	Automate	Guid	ia A	crobat							Com Com	menti 🖻	Condividi ~
	Arial G C S	v 10 v ⊞ v 4	- <u>A</u> -		 <!--</td--><td>😫 Testo a c 🔝 Unisci e :</td><td>apo allinea al cer</td><td>no -</td><td>Numero 88 - % o</td><td>n 11</td><td>-</td><td>Formattazione Fo</td><td>matta come tabella *</td><td>Soli cella v</td><td>Inserisci B v</td><td>imina Forma</td><td>Σ Π0 Φ</td><td>Ordina e</td><td>Trova e seleziona *</td><td>iservatezza v</td><td></td>	😫 Testo a c 🔝 Unisci e :	apo allinea al cer	no -	Numero 8 8 - % o	n 11	-	Formattazione Fo	matta come tabella *	Soli cella v	Inserisci B v	imina Forma	Σ Π0 Φ	Ordina e	Trova e seleziona *	iservatezza v	
Appunti Ta		Carattere	5		Alin	eamento		5	Name	ri	15		Sali			Celle		Modifi	a	Guervalazza	
W6		$\sim f_\ell$																			v
A A	B () (1, (102im ²))	C (02m²) q, 00	E m ²) q,024m	F hace (m)	G M _{rran} (KN*rr	H (f _a (Nimm ²)	1 (j. (74mm²)	ل (_ه (Nime	K n²) (_{at} (Nimm²	L P	M.	N b (cm)	D h, (cm)	P ð (cm)	Q H _{rep} (cm)	R H	S HI	T area (m ²)	U peso unitario (H	4m)	w
3 4,00 4 10,00 5 10,00	3,42 3,42 2,00	2,58 2) 2,58 2) 2,00 3)	0 45,14 0 112,98 0 101,00	8,00 8,00 8,00	450.00 450.00 490.00	450,00 450,00 490,00	391,30 391,30 391,30	28,00 28,00 28,00	15,87 15,87 15,87	0,58 0,58 0,58 0,58	2,46 2,46 2,46	30,00 40,00 40,00	75.63 66.50 67.66	5,00 5,00 5,00	80.63 70.50 72.66	55,00 52,00 80,00	0,10 0,07 0,10	0,17 0,21 0,32	4,13 5,20 8,00		
6 10,00 7 8 9 10 11 12 13	2,00	2,00 3,0	0 101,00	8.00	490,00	450,00	391,30	28,00	15,87	0,58	2,46	40,00	68,56	5,00	73,56	80,00	0,10	0,32	8,00		
54 55 56 17 18 19																					
20 21 22 23 24 25																					
26 27 28 29 30																					
31 32 33 34 35																					
Contra Thier	legno acc	isio dis arm	eto 🛞										1 4								+ 979

Si ottiene una trave principale di 0.4x0.75 m

Dimensiono i pilastri a pressoflessione estraendo le tabelle per ogni tassonomia creata, partendo dai Pilastri Angolari 01 fino ai Pilastri Perimetrali 06

 A
 B
 C
 D
 E
 F
 G
 H
 J
 K
 L
 M
 N
 O
 F

 1
 Pressoflessione in casi di piccola eccentricità: e=M/N <= h/6</td>

 1
 f_{at} f_{ad} b
 h
 A
 WX
 N
 MX
 e
 h/6
 #igma_M
 sigma_max

 3
 Mpa
 Mpa
 ma
 m
 cm²
 cm²
 cm²
 cm²
 cm²
 kN
 N
 MX
 e
 h/6
 sigma_M
 sigma_max

 4
 291.1
 165.5
 0.0
 10000
 8000
 3000
 3885.22
 3.08
 0.09
 6.07
 32.38
 0.46
 32.84

 6
 291.1
 165.5
 0.0
 10000
 3000
 3462.34
 12.27
 0.39
 9.07
 13.37
 7.0
 14.37
 0.81
 14.38
 PIL<ANG.02</td>
 PIL<ANG.02</td>
 PIL<ANG.02</td>
 PIL<ANG.04</td>
 PIL.ANG.04
 PIL.ANG.04
 PIL.ANG.04
 PIL.ANG.04
 PIL.

Calcolo l'eccentricità e attraverso la tabella dimensiono gli elementi