ES.3 – DIMENSIONAMENTO DI UN TELAIO

Laboratorio di progettazione strutturale 1M Prof. Ginevra Salerno Studenti: E. Sesti, P. Visca

1. Apriamo SAP2000 e creiamo un nuovo modello vuoto:

New model -> Blank, verificando Delfaut units = KN, m, C

2. Importiamo il disegno in pianta delle travi, fatto previamente e salvato in dxf, successivamente assegnano al disegno la colonna relativa alle travi:

3. Per realizzare il modello del progetto spostiamo tutto in alto di 7m e a partire dalle intersezioni delle travi estrudiamo i pilatri verso il basso di 7m andando poi a cancellare quelli sotto gli aggetti:

Edit -> move -> Delta z = 7m;

Edit -> Extrude -> Extrude points to Frames/Cables Delta z = -7m

4. Definiamo materiali e sezioni, fissato come acciaio il 235 scegliamo dei profili HEA per i per i pilastri predimensionandoli a compressione, ne risultano HEA300 per i pilastri di bordo e d'angolo e HEA500/320/300 (rastremati ogni 3 piani) per i pilastri centrali. Si scelgono invece per le travi profili IPE 400 e 300, leggermente sovradimensionate per far svolgere al telaio stesso la funzione di controvento. Si procede poi ad assegnare i profili relativi al piano terra:

Define -> Materials -> Add new material -> Steel -> S235;

Define -> Frame sections -> Import new property -> HE300A, HE320A, HE500A, IPE400, IPE300;

Assign -> Frame -> Frame section

timate	64-bit - (Untitled)	imate	64-bit - (Untitled)				n	natic	3			
Defi	ne Draw Select Assign Anal	Defi	ne Draw Select Assign	Ana	lyze	Display Design Options T		Ass	ign Analyze Display	Design Optio	ns To	ools Help
Ŀ.	Materials	Ĭε,	Materials		Q	⊕, ⊖, ∰ %; 3-d xy xz y;	. 8	•	Joint		yz	nv 3 60 🛧 🐺 🗹 🔀
IJ	Section Properties	Ŀ	Section Properties	•	I	Frame Sections		1	Frame		· I'	Frame Sections
	Soil Profiles		Soil Profiles		~	Tendon Sections	-	3	Cable		1	Property Modifiers
555	Foundation Properties	555	Foundation Properties		C	Cable Sections		~	Tendon		1ès	Material Property Overwrites
জ	Foundation Assemblies	-	Foundation Assemblies		_	Area Sections		门	Area		1	Releases/Partial Fixity
•?	Mass Source	•?	Mass Source			Solid Properties		٢	Solid		1	Local Axes
60	Coordinate Systems/Grids	(····)	Coordinate Systems/Grids			Reinforcement Bar Sizes		×	Link/Support		1	Reverse Connectivity
÷	Joint Constraints	\Rightarrow	Joint Constraints		×	Link/Support Properties		:	Joint Loads			End (Length) Offsets
	Joint Patterns		Joint Patterns		××	Frequency Dep. Link Props		im	Frame Loads		T	Insertion Point
	Groups	7	Groups		Ŧ	Hinge Properties	J	2.	Cable Loads			Output Stations
2000 	Generalized Displacements		Section Cuts					~	Tendon Loads			
·.	Functions	< 92	Eventions	_				<u>u</u>	Area Loads		PSA	P-Delta Force
	Load Patterns	Jx VD	Load Patterns	-				#	Solid Loads		i iii'	Path
10 D	Load Cases	10 D	Load Cases						Link/Support Loads		1	Tension/Compression Limits
0+L +E	Load Combinations	D+L +E	Load Combinations					*	Joint Patterns		210	Hinges
ш	Moving Loads	<u>111</u>	Moving Loads	•					Arrian to Group	Ctrl+Shift+G	027	Hinge Overwrites
	Named Property Sets +		Named Property Sets	•				2.	Assign to oroup	Cur+Shirt+G	-	Line Springs
	Pushover Parameter Sets		Pushover Parameter Sets	•					Update All Generated H	linge Properties		Line Mass
	Named Sets +		Named Sets	•				×.	Clear Display of Assigns	5	130	Manual Terrore

5. Definiamo ora i carichi e le combinazioni di carico creando 4 Load pattern relativi a peso proprio (con moltiplicatore pari a 1) e carichi strutturali, permanenti e accidentali (con moltiplicatore pari a 0). Una volta fatto ciò creiamo anche la combinazione dei carichi inserendo al moltiplicatore i relativi coefficienti di sicurezza. Assegniamo poi i diversi carichi qS (=2*x), qP (=3*x), qA (=5*x per funzione ufficio) alle travi principali in base alla larghezza dell'area di influenza (x).

Define -> load patterns

Define -> load combinations

Assign -> Frame loads -> distribuited

6. A questo punto il piano tipo è definito, lo replichiamo quindi in basso di 7m avendo poi cura di dividere i pilastri a 3m di altezza (funzione parcheggi) e di nuovo per il secondo piano di parcheggi. Replichiamo poi in alto tagliando i pilastri a 3,5m (funzione uffici) e cambiando le sezioni ai pilastri da rastremare, replichiamo poi questo piano tipo per gli uffici altre 5 volte, rastremando ancora una volta al piano 4. A questo punto abbiamo il modello strutturale dell'edificio completo e con i carichi assegnati.

Edit -> replicate;

Edit -> Edit lines -> divide frames

Assign -> Frame -> Frame section

7. Dobbiamo ora assegnare i vincoli, assegnamo gli incastri ai pilastri del piano più basso e creiamo dei vincoli interni per cui ogni piano è indeformabile lungo l'asse z avendo cura di spuntare la casella che crea un vincolo per ogni piano e non un unico vincolo che sarebbe irrealistico (vincolo diaframma).

Assign -> Joint -> restraints -> Incastro;

```
Assign -> Joint -> Contraints... -> Define joint contrasints... -> Diaphragm, Add new contraint... -> Z Axis
```


8. Avvio ora l'analisi dei miei 4 casi (PP, qS, qP, qA) e visualizzo i risultati relativi alla combinazione precedentemente creata (passaggio 5)

Analyze -> Run Analysis

9. Scarichiamo quindi i risultati dell'analisi relativi alle travi e ai pilastri per verificarne il predimensionamento tipologia per tipologia con l'aiuto della tabella excel fornita, quando non verificato definiamo ed assegniamo le nuove sezioni come da passaggio 4

Select -> properties -> frame section

Display -> show tables -> analysis result -> element output

S Choose Tables for Display	×	E S	lement Forces	- Frame	es									-		\times
Edit		File	View Ed	lit For	rmat-Filter	Sort Selec	t Optio	ons								
ODEL DEFINITION (0 of 61 tables selected)	Load Patterns (Model Def.)		Export Curre	nt Table	,				To Excel		Element Forces	Frames				-
Property Definitions	Select Load Patients	Bisolay Current Table							IN EACH							
Code Pattern Definitions Comer Definitions	Drint Connect Table on Tost Eile						-								_	
Load Case Definitions		Fine Curren			pe	P KN	V2 KN	V3 KN	KN-m	MZ KN-m	M3 KN-m	Text	11			
Connectivity Data	1 of 5 Selected		Export All Ta	bles			•	tion		-152.4	4 _4 554E-18	0.0008732	-3 348E-17	-154 9248	258.1	τľ
Frame Assignments	Modify/Show Options		Display All Tables Print All Tables as Text File			•			-106,40	-4,0046-10	0,0000732	0,0405.47	-104,0240	0004	+	
Options/Pereferices Data Miscelaneous Data	Set Output Selections						pon	0	-130,1	2 -4,554E-10	0,0008732	-3,125-17	-04,2004	200-1	+1	
ANALYSIS RESULTS (5 of 10 tables selected)	Octors		C			his Country		tion	0	-107,70	9 -4,554E-18	0,0008732	-2,893E-17	-24,8133	2F6-1	-
B- Joint Output	Selection Only		save current	we current lable rormat to lable rormats rile			-lie	tion	0	-85,46	6 -4,554E-18	0,0008732	-2,665E-17	23,5005	2F6-1	-
General Output	Show Unformatted		Save All lable Formats to lable Formats File Apply Format from File to Current Table Apply Formats from File to All Tables				tion	0	-63,14	3 -4,554E-18	0,0008732	-2,437E-17	60,6528	2F6-1		
Objects and Elements						tion	0	-40,8	2 -4,554E-18	0,0008732	-2,21E-17	86,6437	2F6-1	T		
B-U Structure Output							tion	0	-18,49	6 -4,554E-18	0,0008732	-1,982E-17	101,4733	2F6-1	T	
								tion	0	3.8	5 -4.554E-18	0.0008732	-1.754E-17	105.1414	256-1	
	Named Sets		Add Tables					tion	0	26.1	8 _4 554E-18	0.0008732	-1 527E-17	97 6482	256-1	
	Save Named Set		Remove Cur	rent Tabl	le				0	20,1	4,0042-10	0,0000732	4,0005,47	70,0402	2001	
	Show Named Set		Close Form					bon	0	40,4	1 -4,004E-10	0,0008732	-1,2895-17	70,9930	200-1	+
	Contro Hamod Set							tion	0	70,75	3 -4,554E-18	0,0008732	-1,071E-17	49,1776	2F6-1	-
			2F6		5,5	COMB1	Combina	ation	0	93,1	6 -4,554E-18	0,0008732	-8,435E-18	8,2002	2F6-1	-
			2F6		6	COMB1	Combina	ation	0	115,43	9 -4,554E-18	0,0008732	-6,158E-18	-43,9386	2F6-1	
			2F6		6,5	COMB1	Combina	ation	0	137,76	2 -4,554E-18	0,0008732	-3,881E-18	-107,2387	2F6-1	T
			2F6		7	COMB1	Combine	ation	0	160,08	4 -4,554E-18	0,0008732	-1,605E-18	-181,7003	2F6-1	T
	OK Cancel	-													-	
Table Formats File Current Table Formats File: Program Default		0			1								A del Table		Deep	
		Reco	ora. <<	<		>> 01	1401						Add Table	5	Done	

		В								J	К	M	N		Q		
1	interasse (m)	q_s (KN/m ²)	q _p (KN/m ²)	q _a (KN/m ²)	q _u (KN/m)	luce (m)	Mmax (KN*m)	f _{y,k} (N/mm ²)	f _d (N/mm ²)	W _{x,min} (cm ³)	W _x (cm ³)						
2																	
3	6,00	2,00	3,00	5,00	87,60	7,00	170,00	235,00	223,81	759,57	713,00						
4	4,00	2,66	2,61	2,00	41,49	8,00	331,89	275,00	261,90	1267,23	1500,00						
5	4,00	1,88	2,61	2,00	37,46	8,00	299,65	355,00	338,10	886,30	904,00						

10. Eseguiamo a questo punto il controllo sul centro delle rigidezze creando un punto e verificando che sotto l'effetto di una forza orizzontale (una parallela all'asse x ed una all'asse y) trasli e non ruoti. Disegniamo quindi un punto in corrispondenza del centro geometrico della pianta, lo leghiamo al vincolo diaframma del piano relativo e gli assegniamo 2 forze lungo gli assi x ed y per verificare se sotto l'azione di queste ultime il telaio trasla o ruota.

Draw -> point

Edit -> Replicate

Define -> Load pattern -> Fx, Fy

Assign -> joint loads -> forces Analyze -> Run Analysis Display -> deformed shape -> fx; fy

