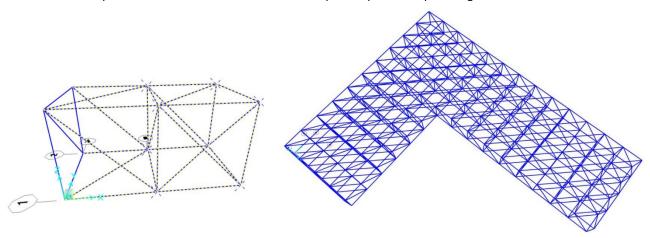
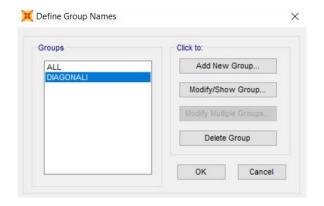
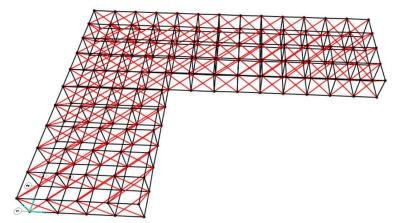

ESERCITAZIONE 1: PREDIMENSIONAMENTO TRAVATURA RETICOLARE

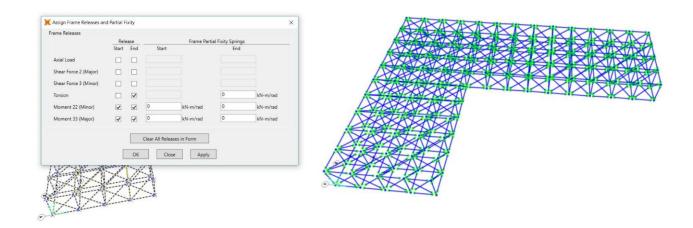

1.DISGENO LA TRAVE RETICOLARE SPAZIALE

• Imposto la griglia di partenza dove poi disegnare il primo modulo della trave reticolare. Il modulo avrà dimensioni 2,5 m x 2,5 m e risulterà controventato su tutte le facce.

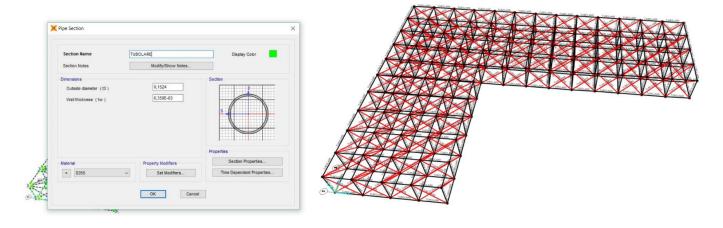




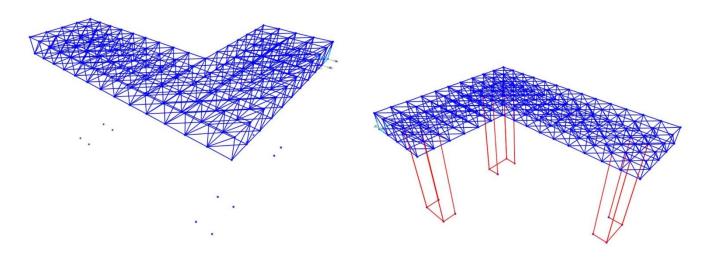
• Copio il modulo assicurandomi di non selezionare la faccia che poi si andrà a sovrapporre utilizzando il comando *ctrl+c*, *ctrl+v* e inserindo quindi le coordinate del nuovo modulo. Ripeto l'operazione per disegnare tutta la struttura reticolare.

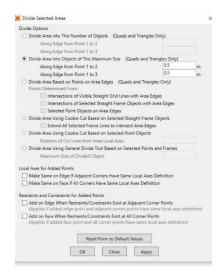


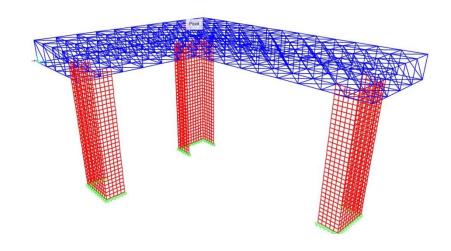
• Definisco il gruppo "DIAGONALI" (define>group>add new Group) e siccessivamente seleziono tutti i controventi e li aggiungo al gruppo (assign>assign to group). Aver creato un gruppo delle diagonali mi permetterà di poter analizzare successivamente la struttura in diversi parti.



• Imposto che tutti nodi della reticolare siano delle cerniere interne attraverso il comando Assign frame releases and partial fixity (Assign>frame>release/partial..).


 Assegno una sezione ipotetica "TUBOLARE" a tutte le aste da modificare successivamente dopo aver effettuato il predimensionamento: Assign>frame> frame sections> Define Sections> add new property> steel> Pipe> define materials> add new material> Italy. L'acciaio che andrò ad utilizzare sarà un S355.


2.DISEGNO I SETTI


• Per disegnare i setti utilizzo il comando *draw special joint> offset z=-16* perchè ipotizzo un totate di 4 piani ognuno alto 4 mt.

(Per selezionare meglio i punti dei setti imposto la vista 2d sul piano x-y con z=0). Successivamente disegno le aree con il comando *draw poly area*.

• Divido le aree dei setti (edit> edit areas> divide Areas > divede area into objects of this maximum size) e assegno Il vincolo dell'incastro alla base dei setti.

3.APPLICO I CARICHI

Individuo il carico totale di tutti i piani:

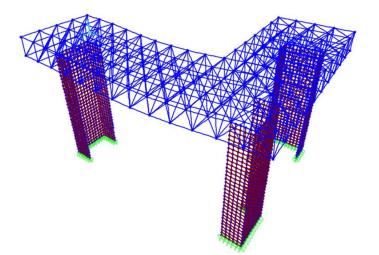
Area= 475 m²

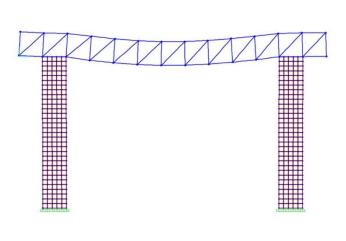
 $Q_{slu} = 12 \text{ KN/m}^2$

 $F_{solaio} = A \times Q = 475 \times 12 = 5700 \text{ KN}$

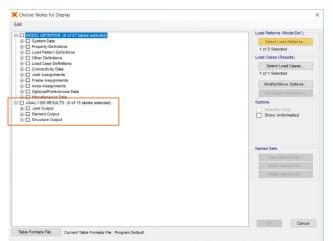
 $F_{tot} = F_{solaio} x (n^{\circ} di piani) = 5700 x 3 = 17100 KN$

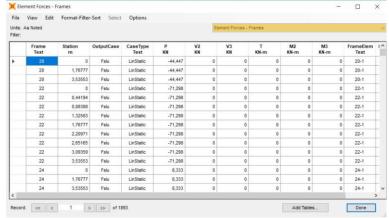
Trovato il carico lo distribuisco sui nodi:

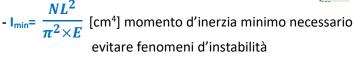

n° di nodi= n° di nodi totali – (n° di nodi perimetrali/2) = 77 divido il numero dei nodi perimetrali perchè su di essi agirà la metà dell'area di influenza e quinndi la metà della forza.


 $F_{nodi\ centrali} = F_{tot}/n^{\circ}\ di\ nodi = 17100/77 =$ 222,1 KN $F_{nodi\ perimetrali} = F_{nodi\ centrali}/2 = 222,1/2 =$ 111,05 KN

 Definisco i carichi: define> load pattern> add new load pattern (self weight = 0) e lo chaimo Fslu Assign> Joint Loads> Forces


4. PPREDIMENSIONAMENTO


Avvio l'analisi solo con il Load Pattern Fslu.



• Seleziono il gruppo delle diagonali e con il comando *ctrl+T* apro la finestra "choose tables for display" e spunto la casella "analysis results" assicurandomi che in "select load patterns" sia selezionato solo Fslu. Esporto su excel la tabella "Element forces- frame".

- Riordino la tabella esportata in modo da differenziare le aste sottoposte a compressione e quelle sottoposte a trazione e aggiungo le sequenti colonne:
 - fy= Resistenza caratteristica dell'acciaio [Mpa]
 - -fyd= fy/1,05 [Mpa] Resistenza di progetto
 - A_{min=} N/ fyd [cm²]
 - A_{eff=} scelta dalla tabella dei profilati
 - E= modulo elastico [Mpa]

- I_{eff}= scelto dalla tabella dei profilati

N.B. = per effettuare le operazioni sono stati convertiti m=>cm e Mpa=>KN/cm²

Il calcolo del momento d'inerzia minimo viene effettuato solo per le aste soggette a compressione.

- Per scegliere i profili nel caso delle aste tese è stata presa in considerazione solo l' area minima mentre per le aste compresse si deve tener conto di entrambi i dati accertandosi che entrambi nel profilario risultino superiori.
- La stesse operazioni vengono ripetute per dimensionare le altre aste della reticolare dopo aver levato dalla selezione le diagonali.

I profili scelti sono

d x s	Peso kg/m	Sezione di passaggio cm²	Sezione metallica cm²	Momenti di inerzia Jx = Jy cm ⁴	Moduli di resistenza Wx = Wy cm³	Raggi di inerzia ix = iy cm
323,9 x 5,9	46,20	765,0	58,90	7.453	460,0	11,20
60,3 x 3,6	5,070	22,10	6,410	25,90	8,580	2,010
219,1 x 5,9	31,00	338,0	39,50	2.247	205,0	7,540
114,3 x 3,6	9,900	90,10	12,50	192,0	33,60	3,920
88,9 x 3,2	6,810	53,50	8,620	79,20	17,80	3,030
273,0 x 6,3	41,60	533,0	52,80	4.696	344,0	9,430
168,3 x 5,0	20,10	197,0	25,70	856,0	102,0	5,780

4.VERIFICA SLE

- Dopo aver scelto i profili tramite il predimensionamento li assegno alle diverse aste creando le nuove sezioni
- Creo un nuovo Load pattern chiamato Fsle impostando il peso proprio della struttura.
- Assegno nuove forze ai nodi utilizzando il carico Q=8 KN/m² nei calcoli effettuati precedentemente.
- Avvio l'analisi e verifico che il massimo spostamento non sia superiore a un 1/250 della luce massimo.