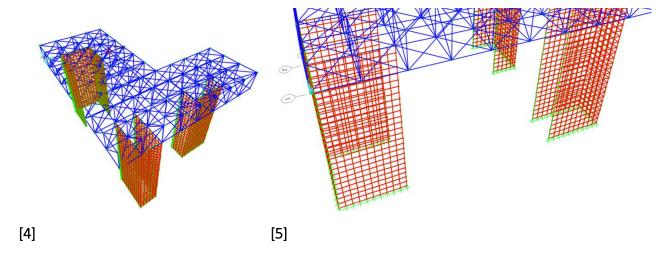

ESERCITAZIONE: PRE-DIMENSIONAMENTO DI UNA TRAVATURA RETICOLARE SPAZIALE


Dopo aver modellato un modulo di reticolare $2.5 \times 2.5 \text{ m}$ [1] ed aver creato due gruppi separati per le diagonali e per i correnti, ho ripetuto questo modulo andando a modellare una travatura reticolare su pianta ad L, le cui dimensioni sono 4x9 moduli + 3x4 moduli (AREA totale = 300 m^2). [2]

Quindi ho selezionato tutta la struttura e rilasciato i momenti tramite il comando "relases/partial fixity", assegnando quindi tutte le cerniere interne della reticolare [3], andando poi ad assegnare una sezione tubolare ipotetica fittizia ad ogni asta (l'obiettivo dell'esercizio sarà assegnare la sezione opportuna dimensionando le singole aste).

Quindi ho disegnato i 3 setti che sosterranno la struttura [4] e li ho vincolati a terra tramite le cerniere [5].

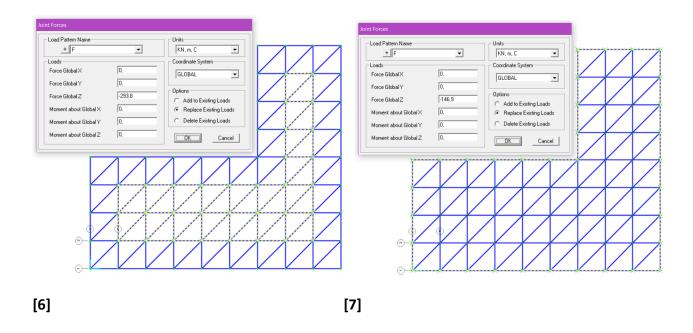
A questo punto ho finito di modellare la struttura e, per poter calcolare le sollecitazioni ed esportare le tabelle degli sforzi normali, è stato necessario calcolare quanti KN applicare su ogni nodo (allo SLU).

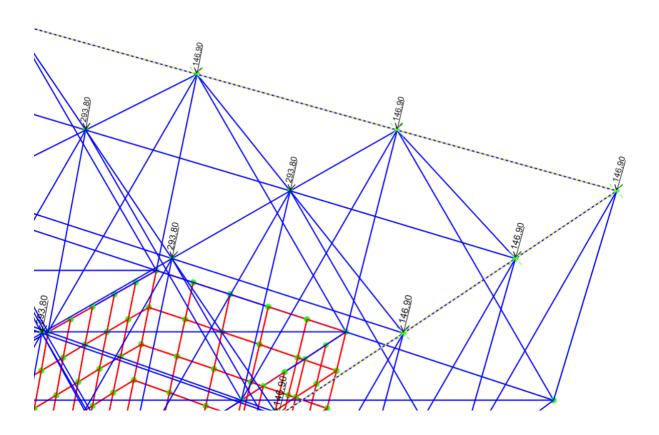
NB: Sui nodi esterni agisce ½ della forza che agisce sui nodi centrali poiché l'aria di influenza è la metà.

Sapendo che l'area totale misura 300 m² e considerando l'incidenza di un solaio in acciaio 12KN/m², allora:

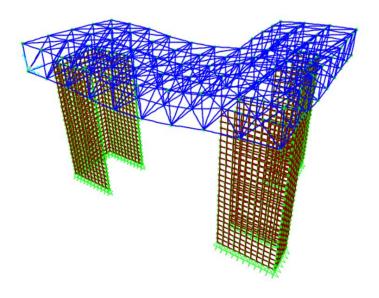
$$F_{1P} = 300 \text{ [m}^2\text{] x } 12 \text{ [KN/m}^2\text{]} = 3600 \text{ KN}$$

Dove F_{1P} è la forza applicata su un singolo piano. Perciò, ipotizzando di avere 4 piani bisogna moltiplicare questo valore per il numero di piani:

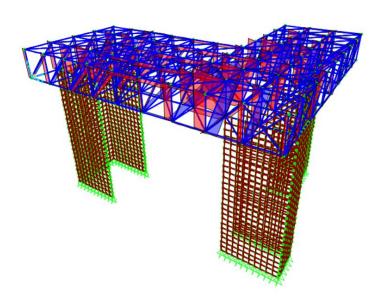

$$F_{1P}$$
 x n piani = 3600 [KN] x 4 = 14400 [KN]

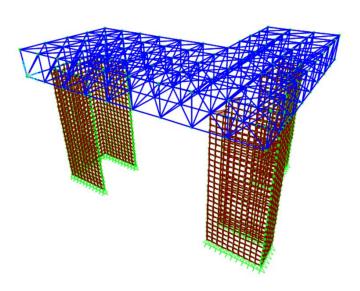

Per ottenere la forza da applicare al singolo nodo basta dividere la forza totale per il numero di nodi (che leggo in basso a sinistra su SAP selezionando la struttura) sottraendo il numero di nodi perimetrali:

$$F_{\text{nodo interno}} = F_{\text{TOT}} / \text{ (n nodi}_{\text{TOT}} - \frac{1}{2} \text{ n nodi}_{\text{perimetrali}}) = 14400 [KN] / (66-34/2) = 14400 [KN] / 49 = 293,8 KN$$


$$F_{\text{nodo perimetrale}} = F_{\text{nodo interno}}/2 = 293.8 / 2 = 146.9 \text{ KN}$$

Ho assegnato quindi 293,8 KN su ogni nodo interno [6] e 146,9 KN su ogni nodo perimetrale. [7]




Ho fatto partire l'analisi e ho così visualizzato la deformata [8] e i diagrammi delle sollecitazioni, verificando che le aste siano soggette solo a sforzo normale N. [9]

[8]

[9] NB: In rosso le aste compresse e in blu le aste tese

Verifica: Momento = 0

Ho selezionato tutte le aste non oblique (gruppo CORRENTI) ed esportato quindi la tabella ELEMENT FORCES-FRAMES [10] eliminando su excel tutto ciò di cui non avevo bisogno e disponendo i frame in ordine crescente rispetto ai KN di sforzo normale, separando trazione (numeri positivi) e compressione (numeri negativi)[11]. La stessa cosa l'ho fatta per le aste oblique (gruppo DIAGONALI). [12]

ts: A	s Noted		ect Options		Element	Forces - Frames	<u> </u>		
	Frame Text	Station m	OutputCase Text	CaseType Text	P KN	V2 KN	V3 KN	T KN-m	M2 KN-m
•	1	0	F	LinStatic	-104,787	0	0	0	(
\neg	1	0,5	F	LinStatic	-104,787	0	0	0	(
\neg	1	1	F	LinStatic	-104,787	0	0	0	(
	1	1,5	F	LinStatic	-104,787	0	0	0	(
	1	2	F	LinStatic	-104,787	0	0	0	(
	1	2,5	F	LinStatic	-104,787	0	0	0	(
	2	0	F	LinStatic	-42,113	0	0	0	1
	2	0,5	F	LinStatic	-42,113	0	0	0	(
	2	1	F	LinStatic	-42,113	0	0	0	
	2	1,5	F	LinStatic	-42,113	0	0	0	(
	2	2	F	LinStatic	-42,113	0	0	0	(
	2	2,5	F	LinStatic	-42,113	0	0	0	(
	3	0	F	LinStatic	-153,049	0	0	0	(
	3	0,5	F	LinStatic	-153,049	0	0	0	(
	3	1	F	LinStatic	-153,049	0	0	0	(
	3	1,5	F	LinStatic	-153,049	0	0	0	(
	3	2	F	LinStatic	-153,049	0	0	0	(
	3	2,5	F	LinStatic	-153,049	0	0	0	(
	4	0	F	LinStatic	-1,605	0,24	0,407	0	(
,_	4	0,5	F	LinStatic	-1,605	0,24	0,407	0	-0,2038

[10]

K74		· : × ✓ fx					
K/4		:					
	Α	В	С	D	Е	F	G
1		T	ABLE: Element	Forces - Fra	mes		
2			CORF	RENTI			
3							
4 N	l° Frame	N [KN]	A min [cm^2]		N° Frame	N [KN]	I min [cm^4]
5		TRAZIONE			CC	OMPRESSIONE	
_	36	404,468			870	-0,013	
7 34		384,321			1	-0,057	
8 22		365,42			12	-0,125	
9 47		356,659				-0,16	
10 58		336,499			420	-3,679	
11 41		321,569			47	-3,981	
12 43		318,249			411	-6,687	
13 87		318,23			575	-7,902	
14 58		315,231				-9,397	
15 41		314,512			549	-11,059	
16 68		301,483			557	-11,071	
17 59		294,437			607	-12,258	
18 77		284,522			545	-15,68	
19 42		273,786			817	-15,97	
20 45		270,468			72	-17,49	
21 45		270,249			472	-17,767	
22 55		260,709			780	-17,834	
23 10		257,055			85	-17,927	
24 49 25 10		252,405			418	-17,932	
26 24		242,813			840	-19,797	
26 24		241,817			581 15	-19,887	
28 83		236,992				-20,83	
28 83		230,924				-21,711	
29 81	19	230,325			835	-26,33	

110	-	: × ✓ fx						
	Α	В	С	D	E	F	G	
1		1	ABLE: Element	Forces - Fra	imes			
2			DIAGO	ONALI				
3								
4 N	l° Frame	N [KN]	A min [cm^2]		N° Frame	N [KN]	I min [cm^4]	
5		TRAZIONE			CC	OMPRESSIONE		
6 92	2	952,154			577	-0,34		
7 44		898,208			824	-1,941		
8 52		702,434			773	-5,5		
9 56		535,933			417	-7,147		
10 53		500,617			453	-9,215		
11 76		497,69			807	-9,264		
12 91		466,042			794	-9,468		
13 39		428,359			492	-11,137		
14 52		383,425			422	-11,723		
15 43		379,158			614	-12,158		
16 79		377,671			565	-12,532		
17 60		311,722			609	-13,159		
18 82		308,248			444	-13,756		
19 61		302,537			461	-14,128		
20 85		298,373			569	-14,373		
21 85		292,427			75	-14,662		
22 55		282,871			622	-14,933		
23 78 24 51		272,955			65	-15,882		
25 54		268,396			863	-16,486		
25 54		267,662			117 854	-20,034 -20,645		
26 79		249,847			452			
28 47		247,88 204,869			507	-21,782		
29 79					408	-22,901 -25,511		
29 79	71	204,419			400	-25,511		_

A questo punto l'esercizio è stato quello di dividere i gruppi COMPRESSIONE e TRAZIONE ognuno in 3 sottogruppi a cui ho assegnato la sezione idonea calcolando l'area minima per le aste tese e il momento di inerzia minimo per le aste compresse di ogni sottogruppo, riferendomi al valore più significativo per ognuno di essi.

NB: (La scelta di dividere in 3 sottogruppi deriva dal fatto che sarebbe infattibile assegnare una sezione diversa per ogni asta dato il numero elevato di aste, perciò dividendo in gruppi ho assegnato solo 8 sezioni differenti.)

Calcolati area [cm²] e momento di inerzia [cm⁴] ho cercato il sagomario dei profili cavi e ho cercato all'interno delle tabelle a quali profili corrispondevano le aree e i momenti di inerzia trovati.

$$A_{min} = \frac{N [KN]}{fd [KN/cm^2]} = [cm^2]$$

$$I_{min} = N [KN] \times L^2 [cm^2] = [cm^4]$$

 $\pi^2 \times E [KN/cm^2]$

Riferimento profilati excel:

lege	nda:
	profilato 1
	profilato 2
	profilato 3
_	
	profilato 4
	profilato 5
	profilato 6

Profilato 1:

A_{min}= 18,07[cm²] per i CORRENTI; 42,54[cm²] per le DIAGONALI → considero 42,54[cm²]

Profilato 2:

A_{min}= 12,23[cm²] per i CORRENTI; 12,19[cm²] per le DIAGONALI → considero 12,23[cm²]

Profilato 3:

 A_{min} = 4,20[cm²] per i CORRENTI; 4,05[cm²] per le DIAGONALI \rightarrow considero 4,20[cm²]

Profilato 4:

 I_{min} = 120,58[cm⁴] per i CORRENTI; 222,55[cm⁴] per le DIAGONALI \rightarrow considero 222,55[cm⁴]

Profilato 5:

 I_{min} = 248,24[cm⁴] per i CORRENTI; 423,01[cm⁴] per le DIAGONALI \rightarrow considero **423,01[cm⁴**]

Profilato 6:

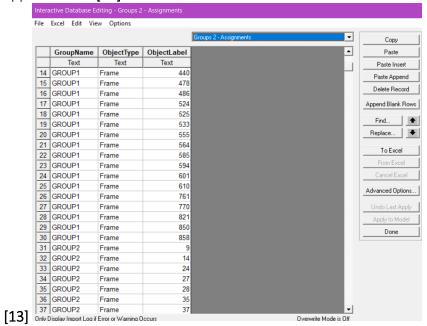
 I_{min} = 430,33[cm⁴] per i CORRENTI; 668,22[cm⁴] per le DIAGONALI \rightarrow considero 668,22[cm⁴]

D	r	\sim	fi	i	lat	۲	\sim	. 1	
М	П	()	ш	П	ıaı	u) [

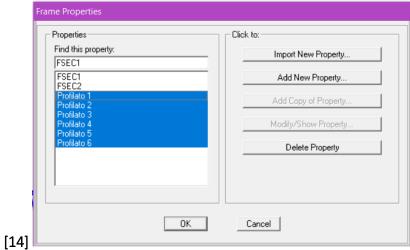
Diametro	Spessore	Massa	Area della	Momento	Raggio	Modulo di	Modulo di	Momento	Costante	Superficie	Lunghezza
esterno		a ml	sezione	d'inerzia	d'inerzia	resistenza elastico	resistenza plastico	d'inerzia di torsione	di torsione	esterna a ml	per ton
D	t	M	Α	- 1	i	Wel	W _{pl}	lt	Ct	5000000	
mm	mm	kg/m	cm ²	cm ⁴	cm	cm ³	cm ³	cm ⁴	cm ³	m ² /m	m/t
177.8	8.0	33.5	42.7	1541	6.01	173	231	3083	347	0.559	29.9

Profilato 2:

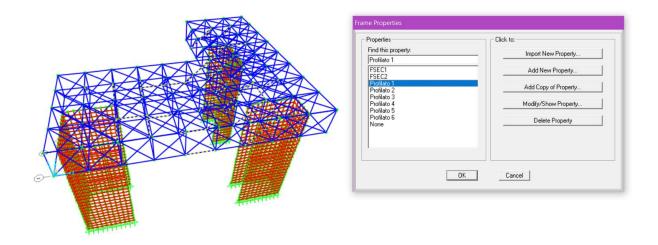
Diametro esterno	Spessore	Massa a ml	Area della sezione	Momento d'inerzia	Raggio d'inerzia	Modulo di resistenza	Modulo di resistenza	Momento d'inerzia	Costante di torsione	Superficie esterna	Lunghezza per ton
D mm	t mm	M kg/m	A cm ²	I cm ⁴	i cm	elastico W _{el} cm ³	plastico W _{pl} cm ³	di torsione I _t cm ⁴	C _t	a ml m ² /m	m/t
101,6	4,0	9,63	12,3	146	3,45	28,8	38,1	293	57,6	0,319	103,9

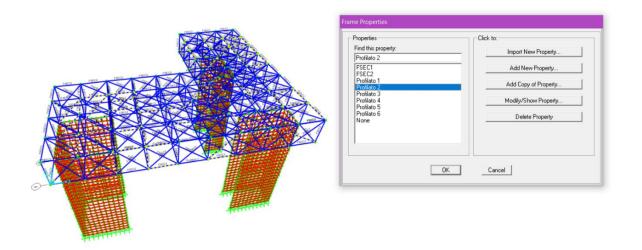

Diametro esterno D mm	Spessore t mm	Massa a ml M kg/m	Area della sezione A cm ²	Momento d'inerzia I cm ⁴	Raggio d'inerzia i cm	Modulo di resistenza elastico Wel cm ³	Modulo di resistenza plastico W _{pl} cm ³	Momento d'inerzia di torsione l _t cm ⁴	Costante di torsione Ct cm3	Superficie esterna a ml m ² /m	per ton
60,3	2,5	3,56	4,54	19,0	2,05	6,30	8,36	38,0	12,6	0,189	280,6

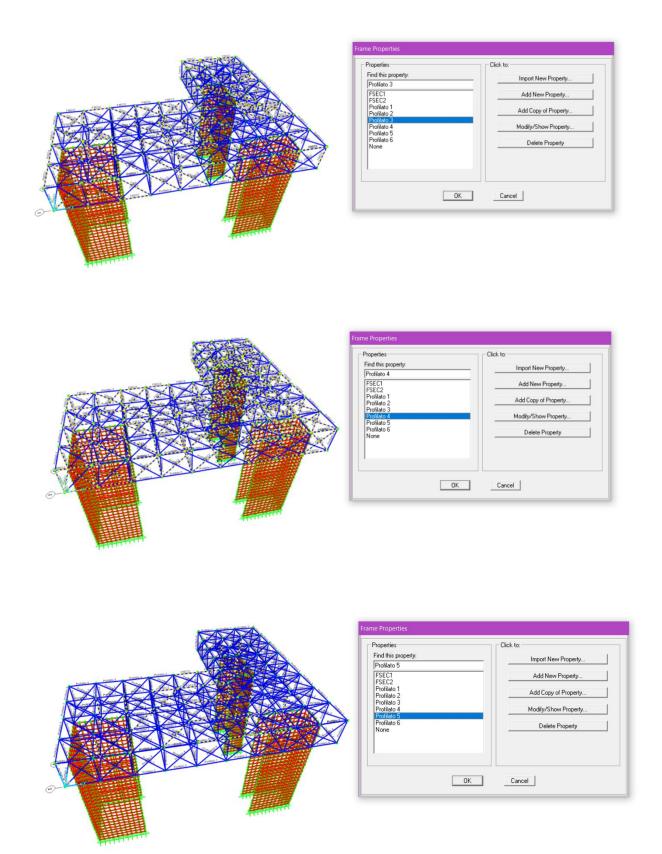
Diametro esterno	Spessore	Massa a ml	Area della sezione	/ Momento d'inerzia	Raggio d'inerzia	Modulo di resistenza elastico	Modulo di resistenza plastico	Momento d'inerzia di torsione	Costante di torsione	Superficie esterna a ml	per ton
D mm	t mm	M kg/m	A cm ²	I cm ⁴	i cm	W _{el} cm ³	W _{pl} cm ³	I _t cm ⁴	C _t	m ² /m	m/t
114,3	5,0	13,5	17,2	257	3,87	45,0	59,8	514	89,9	0,359	74,2

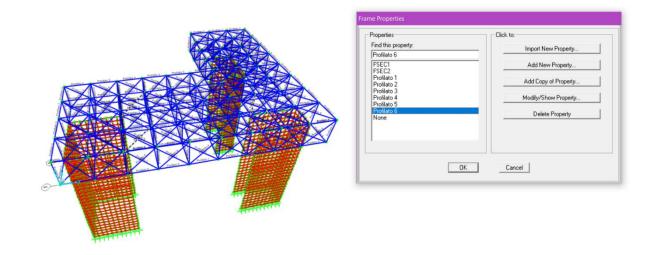

Profilato	5:										
Diametro esterno	Spessore	Massa a ml	Area della sezione	Momento d'inerzia	Raggio d'inerzia	Modulo di resistenza elastico	Modulo di resistenza plastico	Momento d'inerzia di torsione	Costante di torsione	Superficie esterna a ml	Lunghezza per ton
D mm	t mm	M kg/m	A cm ²	I cm ⁴	i cm	W _{el}	W _{pl}	I _t cm ⁴	C _t	m ² /m	m/t
139.7	5.0	16.6	21.2	481	4.77	68.8	90.8	961	138	0.439	60.2

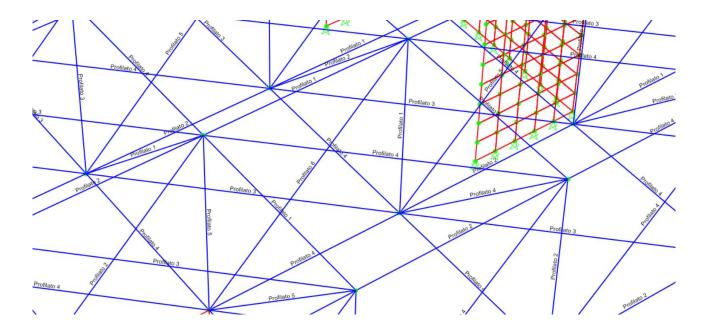
				/							
Diametro	Spessore	Massa	Area della	/ Momento	Raggio	Modulo di	Modulo di	Momento	Costante	Superficie	Lunghezz
esterno		a ml	sezione	d'inerzia	d'inerzia	resistenza	resistenza	d'inerzia	di torsione	esterna	per ton
						elastico	plastico	di torsione		a ml	
D		M	Α	- 1		W _{el}	W _{pl}	la torsione	C _t	u	
U	ı		0.000			"ei	0.000	ч			
mm	mm	kg/m	cm ²	cm ⁴	cm	cm ³	cm ³	cm ⁴	cm ³	m ² /m	m/t
168.3	4.0	16.2	20.6	697	5.81	82.8	108	1394	166	0.529	61.7
100.0	4.0	10.2	20.0	160	0.01	02.0	100	1004	100	0.020	01.7


Ho creato quindi 6 gruppi, uno per ogni profilato ed ho assegnato ad ogni asta il gruppo di appartenenza [13].

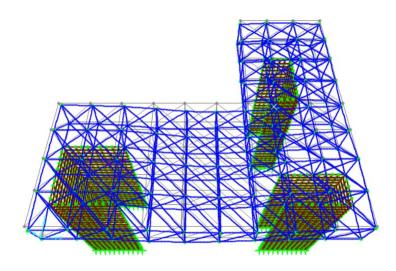



Scelti i profilati li ho creati su SAP [14] ed assegnati ad ogni gruppo di aste [15].




[15]

Verifica di deformabilità considerando l'incidenza del solaio di 8 KN/m² (S.L.E.)


$$F_{1P} = 300 \text{ [m}^2] \text{ x 8 [KN/m}^2] = 2400 \text{ KN}$$

$$F_{1P}$$
 x n piani = 2400 [KN] x 4 = 9600 [KN]

$$F_{\text{nodo interno}} = F_{\text{TOT}} / \text{ (n nodi}_{\text{TOT}} - \frac{1}{2} \text{ n nodi}_{\text{perimetrali}}) = 9600 \text{ [KN]} / (66-34/2) = 9600 \text{ [KN]} / 49 = 195,9 \text{ KN}$$

$$F_{\text{nodo perimetrale}} = F_{\text{nodo interno}}/2 = 195,9/2 = 97,9 \text{ KN}$$

Ho quindi rifatto partire l'analisi:

Esportando la tanella JOINT DISPLACEMENTS ho individuato qual è l'elemento che subisce maggior abbassamento:

si tratta del punto 1205 che subisce un abbassamento U₃ di 0,00002 m.

				<u> </u>				
TABLE: Jo	 oint Displacem	ents						
Joint	OutputCase	CaseType	U1	U2	U3	R1	R2	R3
Text	Text	Text	m	m	m	Radians	Radians	Radians
1205	F2	LinStatic	0,000071	-0,000057	0,00002	0,000005159	0,000021	-0,00001
1216	F2	LinStatic	0,000061	-0,000054	0,00002	0,000007648	0,00002	-0,00000942
1227	F2	LinStatic	0,000051	-0,000049	0,00002	0,000009535	0,000019	-0,00000714
1194	F2	LinStatic	0,000082	-0,000059	0,000019	0,000001996	0,000021	-0,00001
1238	F2	LinStatic	0,000042	-0,000044	0,000019	0,000011	0,000017	-0,00000531
1183	F2	LinStatic	0,000093	-0,000059	0,000018	-0,000001897	0,000022	-0,0000
1249	F2	LinStatic	0,000033	-0,000038	0,000018	0,000012	0,000016	-0,00000385
1260	F2	LinStatic	0,000025	-0,000032	0,000017	0,000012	0,000014	-0,00000272
1172	F2	LinStatic	0,000105	-0,000057	0,000016	-0,000006557	0,000022	-0,00002
1161	F2	LinStatic	0,000116	-0,000052	0,000014	-0,000012	0,000023	-0,0000
1271	F2	LinStatic	0,000018	-0,000026	0,000014	0,000013	0,000013	-0,00000186