ESERCITAZIONE 2 DIMENSIONAMENTO DI UNA TRAVE RETICOLARE SPAZIALE _ ELISABETTA MORONI

L'esercitazione assegnata prevede la progettazione di una trave reticolare spaziale, da realizzarsi con l'ausilio del software SAP 2000. La trave reticolare è composta da un modulo cubico 3x3x3 metri, opportunamente controventato in ogni sua faccia, che si ripete per 15 volte lungo l'asse x e 6 volte lungo l'asse y, per dimensioni totali di 18 x 45 metri.

Apro un nuovo file, imposto le unità di misura (KN, m, C) e i materiali di default (Italy) e procedo alla modellazione del primo modulo (File_ New Model_Grid only).

Imposto le grid lines (numero di griglie 2 per gli assi x,y,z) e la spaziatura tra le griglie (3, 3, 3).

Disegno il modulo (Draw_Frame/Cable/Tendon). Definisco il materiale acciaio 275 (Define_Materials_ Add New Materials – "Italy, Steel, NTC 2008, S275") e le sezioni (Define_Section properties_Frame section_Import new properties).

Seleziono il file "EURO.PRO" e, tra i profilati presenti nell'elenco assegno alle aste di lunghezza 3 m – contrassegnate dal color indaco – un pipe (tubo in acciaio 275 a sezione cava circolare) di diametro 273x5.6 mm di spessore; mentre alle aste inclinate di lunghezza 4.24 m, un pipe di diametro 298.5x5.9 mm di spessore – distinte dal colore in rosso – che utilizzerò per la prima analisi (seleziono i rispettivi frame e Assign_Frame_Frame Section).

ipe Section			S Pipe Section		
Section Name	TUBO-D273X5.6 Modify/Show Notes	/ Display Color	Section Name Section Notes	TUBO-D298.5X5.9 Modify/Show Notes	Display Color
Extract Data from Section R Open File C:\pro	Property File ogram files\computers and structures\sap2000 22\euro	.pro Import	Extract Data from Section P Open File	roperty File gram files\computers and structures\sap2000 2;	2\euro.pro Import
Dimensions Outside diameter (13) Wall thickness (tw)	0,273 5,600E-03	Sector	Dimensions Outside diameter (13) Wall thickness (1w)	0,2985 5,900E-03	Section 3 Properties
+ S275	✓ Set Modifiers	Section Properties Time Dependent Properties	Material + S275	Property Modifiers ✓ Set Modifiers	Section Properties Time Dependent Properties
	OK Cancel			OK Cancel	

Disegnato il modulo, definiti i materiali ed assegnate le sezioni, non utilizzo il comando control/c_ control/v, per non perdere le proprietà assegnate, ma lo replico, sino a raggiungere le dimensioni di progetto (Edit_Replicate_lungo x e lungo y).

Affinché la struttura si comporti come trave reticolare impongo che tutti i nodi siano cerniere interne. Seleziono tutto il modello e comunico al software – che altrimenti li considererebbe nodi rigidi – di imporre momento nullo ai nodi (Assign_Frame_ Releases/Partial Fixity, momento sull'asse 2-2 e 3-3, valore zero).

Procedo poi ad assegnare i vincoli. Imposto la vista 2d (View – Set 2D View – XY Plane Z=0) e distribuisco i vincoli cerniera secondo progetto (Assign_Joint_Restraints_Pinned).

Stabilisco i carichi. Ho optato per un solaio in lamiera grecata.

Analisi dei carichi allo SLU

GK1 (carico permanente strutturale): totale **2,43 KN/m**² peso lamiera grecata: 0,11 KN/m² peso soletta cls: 2,32 KN/m²

GK2 (carico permanente non strutturale): totale **3,46 KN/m**² pavimento in rovere: 0,25 KN/m² massetto: 1,00 KN/m² impianti (incidenza): 0,10 KN/m² controsoffitto: 0,06 KN/m² isolante: 0,056 KN/m² tramezzi (incidenza): 1,60 KN/m² intonaco: 0,4 KN/m²

Qk (carico variabile) Cat. A (civile abitazione): totale **2,00 KN/m**²

COMBINAZIONE FONDAMENTALE

 $Fd = (gamma_{g1} \cdot GK1) + (gamma_{g2} \cdot GK2) + (gamma_{q1} \cdot QK1)$ $Fd=(2,43\cdot1,3) + (3,46\cdot1,5) + (2\cdot1,5) = 11,35 \text{ KN/m}^2$

Calcolo ora l'area totale del singolo solaio appeso alla travatura reticolare: 18m·45m=810 m²

Moltiplico il carico al m² per l'area del solaio:

11,35 KN/m²·810 m²= 9.193,5 KN x i 4 piani totali= 36.774 KN e ottengo la forza totale insistente sulla struttura.

In base all'area di influenza dei singoli elementi strutturali procedo a ripartire i carichi: risultano 4 nodi cerniera esterni (agli spigoli), 70 nodi cerniera interni, 38 nodi cerniera perimetrali.

Pertanto, la F TOT è data dalla somma di 4 F/4 + 70 F + 28/2 F= 90 F

36.774 KN = 90 F

F=408,6 KN

F/2= 204,3 KN

F/4= 102,15 KN

A questo punto definisco il carico (define_load Pattern), denominato F e annullo il moltiplicatore di carico per il peso proprio, che valuterò solo dopo il primo dimensionamento degli elementi strutturali, all'esito della prima analisi.

Assegno ora le forze nel modello: stabilisco la vista (3dview_piano xy_aperture 0 degree), seleziono i nodi centrali (Assign_Joint Loads_Forces_ Global Z = - 408,6 KN); i nodi perimetrali (Assign_Joint Loads_Forces_ Global Z = - 204,3 KN); e i nodi esterni agli spigoli (Assign_Joint Loads_Forces_ Global Z = - 102,15 KN).

Posso, a questo punto, lanciare l'analisi della struttura (Analyze_Run Analysis).

Verifico che i momenti siano zero su entrambi gli assi (2-2 e 3-3)

DIAGRAMMA DEI MOMENTI 2-2

DIAGRAMMA DEI MOMENTI 3-3

Esporto le tabelle (Display_show Tables), seleziono il load pattern e il load case (F), seleziono le tabelle "analysis results" e estraggo la tabella in excel "element forces frame".

Ripulisco la tabella ordinando la colonna station dal numero più piccolo al più grande e cancello tutto quello che viene dopo la stazione O (essendo lo sforzo normale - unico agente sulla struttura - costante, il valore non muta) e verifico che il numero di frame emergente dalla tabella excel corrisponda alla selezione del modello SAP (895 frames).

Ordino la colonna degli sforzi normali agenti e procedo alla tassonomia delle sezioni, raggruppandole in 12 classi (7 a compressione e 5 a trazione), accorpando quelle con sforzi normali vicini (range 300 KN – fanno eccezioni alcune classi di aste "eccezionali", esigue in numero, che sono soggette a sforzo assiale molto elevato, le SEZIONE A e N –).

Procedo al dimensionamento delle aste con profilo tubolare in acciaio cavo a sezione circolare: per quelle soggette a sforzo normale di trazione, prendo a riferimento il valore più alto della singola classe di appartenenza, valutando l'area minima per la verifica a resistenza; mentre per quelli soggetti a compressione prendo a riferimento il valore più piccolo e, oltre all'area minima per il progetto a resistenza, valuto anche l'inerzia minima e il rho, per controllare i fenomeni di instabilità.

inits: As Noted						Ele	Element Forces - Frames					
	Frame Text	Station	OutputCase	CaseType Text	P KN	V2 KN	V3 KN	T KN-m	M2 KN-m	M3 KN-m	FrameElem Text	11
•	1	0	F	LinStatic	-167,965	0	0	0	0	0	1-1	
	1	1,5	F	LinStatic	-167,965	0	0	0	0	0	1-1	
	1	3	F	LinStatic	-167,965	0	0	0	0	0	1-1	
	2	0	F	LinStatic	-4,378	0	0	0	0	0	2-1	Γ
	2	0,5	F	LinStatic	-4,378	0	0	0	0	0	2-1	
	2	1	F	LinStatic	-4,378	0	0	0	0	0	2-1	
	2	1,5	F	LinStatic	-4,378	0	0	0	0	0	2-1	
	2	2	F	LinStatic	-4,378	0	0	0	0	0	2-1	
	2	2,5	F	LinStatic	-4,378	0	0	0	0	0	2-1	
	2	3	F	LinStatic	-4,378	0	0	0	0	0	2-1	
	3	0	F	LinStatic	0	0	0	0	0	0	3-1	Γ
	3	1,5	F	LinStatic	0	0	0	0	0	0	3-1	
	3	3	F	LinStatic	0	0	0	0	0	0	3-1	Γ
	4	0	F	LinStatic	0	0	0	0	0	0	4-1	Γ

	A	В		С	D	E	F
1	TABLE:	Element Fo	orces - Fr	ames			
2	Fram	ne Statio	n Outp	outCase	CaseType	Р	
3	1948		0 F		LinStatic	-2764,943	TUBO-D457.2X7.1
4	1949		0 F		LinStatic	-2095,985	TUBO-D457.2X7.1
5	1849		0 F		LinStatic	-2081,045	TUBO-D457.2X7.1
6	1851		0 F		LinStatic	-2003,858	TUBO-D457.2X7.1
7	2266		OF		LinStatic	-1930,792	TUBO-D457.2X7.1
8	1867		0 F		LinStatic	-1904,227	TUBO-D457.2X7.1
9	78		0 F		LinStatic	-1857,101	TUBO-D457.2X7.1
10	1850		0 F		LinStatic	-1805,443	TUBO-D457.2X7.1
11	2365		0 F		LinStatic	-1758,344	TUBO-D457.2X7.1
12	2268		0 F		LinStatic	-1588,21	TUBO-D406.4X6.3
13	2329		0 F		LinStatic	-1573,02	TUBO-D406.4X6.3
14	1950		0 F		LinStatic	-1560,725	TUBO-D406.4X6.3
15	2302		0 F		LinStatic	-1556,875	TUBO-D406.4X6.3
16	117		0 F		LinStatic	-1505,345	TUBO-D406.4X6.3
17	1953		0 F		LinStatic	-1464,795	TUBO-D406.4X6.3
18	1930		OF		LinStatic	-1422,341	TUBO-D406.4X6.3
19	2367		0 F		LinStatic	-1407,237	TUBO-D406.4X6.3
20	2330		OF		LinStatic	-1401,232	TUBO-D406.4X6.3
21	2267		0 F		LinStatic	-1364,624	TUBO-D406.4X6.3
22	2303		0 F		LinStatic	-1333,919	TUBO-D406.4X6.3
23	1932		0 F		LinStatic	-1234,166	TUBO-D406.4X6.3
24	2331		0 F		LinStatic	-1200,165	TUBO-D406.4X6.3
25	120		OF		LinStatic	-1183,794	TUBO-D273X5.6
26	2366		0 F		LinStatic	-1147,963	TUBO-D273X5.6
27	2304		0 F		LinStatic	-1121,53	TUBO-D273X5.6
28	1868		0 F		LinStatic	-1092,645	TUBO-D273X5.6
20	1021	Element For	Ces - Fra	ames P	rogram Cor	1072 261	TILDO DOTOVE C
					9.4		

ASTE SOGGETTE A COMPRESSIONE:

Sezione A: TUBO-D457.2X7.1	(9 ASTE)
Sezione B: TUBO-D406.4X6.3	(13 ASTE)
Sezione C: TUBO-D273X5.6	(14 ASTE)
Sezione D: TUBO-D219.2X5	(30 ASTE)
Sezione E: TUBO-D139.7X4	(68 ASTE)
Sezione F: TUBO-D114.3X3.6	(167 ASTE)
Sezione G: TUBO-D76.1X3.2	(136 ASTE)
ASTE SOGGETTE A TRAZIONE	Ξ:
Sezione H: TUBO-D76.1X3.2((268 ASTE)
Sezione I: TUBO-D114.3X3.6	(110 ASTE)
Sezione L: TUBO-D168.3X4.5	(42 ASTE)
Sezione M: TUBO-D219.2X5	(26 ASTE)

Sezione N: TUBO-D355.6X6.3 (12 ASTE)

TOTALE ASTE 895

Esporto quindi la tabella excel descrittiva della sezione delle aste (Display->Show tables->Property definition->Frame section properties) e, una volta assegnate le sezioni dimensionate, la importo su SAP (file_import_ SAP2000 MS excel spreadsheet .xls file).

Lancio nuovamente l'analisi, stavolta con il load pattern "Dead" per apprezzare il peso proprio della struttura ed aggiungerlo all'analisi dei carichi operata (Analyze_Run analysis_Load pattern e Load case to run_DEAD).

Dalle tabelle SAP apro in excel i valori delle reazioni vincolari (Display_Show tables_Joint output_ Reactions) e sommo la componente complessiva del peso proprio alla forza totale in prima istanza valutata e procedo di nuovo alla suddivisione dei carichi.

1	TABLE: Frame Section Assignments						1 TABLE: Joint Reactions					
2	Frame	SectionType	AutoSelect	AnalSect	DesignSect	2	Joint	OutputCase	CaseType	F1	F2	F3
3	Text	Text	Text	Text	Text	3	Text	Text	Text	KN	KN	KN
4	1	Pipe	N.A.	TUBO-D76.1X3.2	TUBO-D76.1X3.2	4	25	DEAD	LinStatic	1.246	1.624	30.657
5	2	Pipe	N.A.	TUBO-D76.1X3.2	TUBO-D76.1X3.2	5	37	DEAD	LinStatic	-1.878	1.605	27.397
6	3	Pipe	N.A.	TUBO-D114.3X3.6	TUBO-D114.3X3.6	6	425	DEAD	LinStatic	-11 511	-4 907	57 085
7	4	Pipe	N.A.	TUBO-D76.1X3.2	TUBO-D76.1X3.2	7	420	DEAD	LinStatic	6.024	2,000	27,003
8	5	Pipe	N.A.	TUBO-D76.1X3.2	TUBO-D76.1X3.2	1	429	DEAD	Linstatic	6,934	2,009	27,903
9	6	Pipe	N.A.	TUBO-D76.1X3.2	TUBO-D76.1X3.2	8	443	DEAD	LinStatic	-5,419	0,385	29,552
10	7	Pipe	N.A.	TUBO-D76.1X3.2	TUBO-D76.1X3.2	9	447	DEAD	LinStatic	9,753	-5,143	65,355
11	8	Pipe	N.A.	TUBO-D114.3X3.6	TUBO-D114.3X3.6	10	521	DEAD	LinStatic	-2,731	3,192	41,3
12	9	Pipe	N.A.	TUBO-D76.1X3.2	TUBO-D76.1X3.2	11	529	DEAD	LinStatic	2,794	-2,048	29,506
13	10	Pipe	N.A.	TUBO-D114.3X3.6	TUBO-D114.3X3.6	12	535	DEAD	LinStatic	-0,472	-1,675	30,516
14	11	Pipe	N.A.	TUBO-D114.3X3.6	TUBO-D114.3X3.6	13	543	DEAD	LinStatic	1,284	4,957	36,023
15	12	Pipe	N.A.	TUBO-D114.3X3.6	TUBO-D114.3X3.6	14						375,374

F tot= 36.774 KN +375,374 KN= 90 F

37.149,374 KN =90F

F = 412,77 KN

F/2= 206,38 KN

F/4= 103,19 KN

Assegno nuovamente i carichi così calcolati alla struttura modellata, sostituendoli ai precedenti (replace existing) e lancio l'analisi (load pattern_Load case F, ora comprensivo del peso proprio degli elementi) ed estraggo nuovamente la tabella degli sforzi normali.

ANALISI PESO PROPRIO

Controllo che le sezioni assegnate siano ancora verificate.

Osservo che le sezioni A, E, M, N, non sono verificate e procedo ancora una volta al dimensionamento. SOSTITUZIONI, con il medesimo procedimento (mediante importazione foglio excel):

 Sezione A: TUBO-D457.2X8
 (9 ASTE)

 Sezione E: TUBO-D139.7X4.5
 (68 ASTE)

 Sezione M: TUBO-D273X5.6
 (26 ASTE)

 Sezione N: TUBO-D355.6X8
 (12 ASTE)

Lancio nuovamente l'analisi con il load Pattern DEAD, estraggo le reazioni vincolari e faccio la medesima operazione svolta in precedenza.

F tot= 36.774 KN +403,582 KN= 90 F 37177,582 KN =90F F = 413,08 KN F/2= 206,54 KN

F/4= 103,27 KN

1	TABLE: Joint Reactions										
2	Joint	OutputCase	CaseType	F1	F2	F3					
3	Text	Text	Text	KN	KN	KN					
4	25	DEAD	LinStatic	2,152	2,742	32,653					
5	37	DEAD	LinStatic	-1,491	2,757	32,992					
6	425	DEAD	LinStatic	-10,617	-3,722	57,669					
7	429	DEAD	LinStatic	5,927	1,541	29,719					
8	443	DEAD	LinStatic	-5,897	-0,238	33,76					
9	447	DEAD	LinStatic	9,553	-6,387	65,259					
10	521	DEAD	LinStatic	-4,078	2,191	44,12					
11	529	DEAD	LinStatic	3,841	-2,886	33,958					
12	535	DEAD	LinStatic	0,396	-1,754	35,968					
13	543	DEAD	LinStatic	0,214	5,757	37,484					
14						403,582					

Riassegno i carichi, lancio l'analisi ed estraggo la tabella degli sforzi normali.

Le sezioni sono tutte verificate.