RIPARTIZIONE DELLA FORZA SISMICA

Metodo delle Rigidezze

Agnese Rachele Nicastro Esercitazione 2

L'obiettivo di questa esercitazione è quello di analizzare come viene ripartita una forza orizzontale (come ad esempio quella sismica) sui diversi telai che compongono una struttura e analizzarne la risposta in termini cinematici. Sarà dunque applicato il Metodo delle Rigidezze. Si specifica che per questa esercitazione si prendono in considerazione una specifica tecnologia (cemento armato) e una specifica tipologia di controventi, ossia i telai Shear-type.

• Geometria dell'impalcato: Si prende in analisi la struttura di un edificio ad un piano [Figura_1], con pianta ad L, solaio rigido nel suo piano e telai shear-type, ovvero telai piani, costituiti da travi e pilastri, opportunamente progettati in modo da sopportare anche le azioni orizzontali e svolgere il ruolo di controventi (tutti i nodi sono ad incastro e la trave è considerata infinitamente rigida flessionalmente rispetto ai pilastri). Poiché i controventi per il solaio rappresentano vincoli cedevoli elasticamente, sono schematizzati nel piano dell'impalcato come molle, aventi adeguata rigidezza (K_V per i telai verticali e K_O per i telai orizzontali).

L'impalcato è dunque costituito da 6 telai verticali, paralleli all'asse y, e 4 telai orizzontali, paralleli all'asse x.

T_{v1}: telaio verticale 1, composto dai pilastri 1,7,13.

T_{v2}: telaio verticale 2, composto dai pilastri 2,8,14.

T_{v3}: telaio verticale 3, composto dai pilastri 3,9,15.

T_{v4}: telaio verticale 4, composto dai pilastri 4,10,16,19.

T_{v5}: telaio verticale 5, composto dai pilastri 5,11,17,20.

T_{v6}: telaio verticale 6, composto dai pilastri 6,12,18,21.

T₀₁: telaio orizzontale 1, composto dai pilastri 1,2,3,4,5,6.

T₀₂: telaio orizzontale 2, composto dai pilastri 7,8,9,10,11,12.

T₀₃: telaio orizzontale 3, composto dai pilastri 13.14,15,16,17,18.

T₀₄: telaio orizzontale 4, composto dai pilastri 19,20,21.

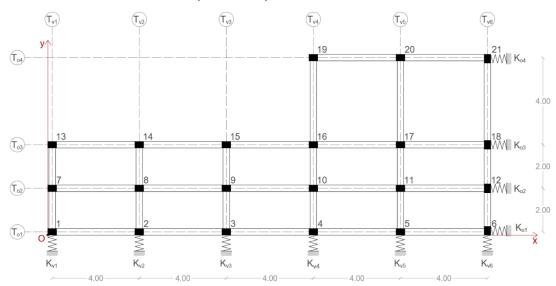
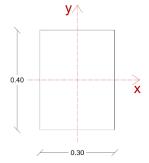



Figura 1_Geometria dell'impalcato

I pilastri impiegati hanno sezione 30x40 cm e sono stati orientati in modo da avere l'asse locale y parallelo all'asse x del sistema globale, ad esclusione dei pilatri 6,12,18,21.

$$I_X = \frac{bh^3}{12} = \frac{30(40^3)}{12} = 160000 \ cm^4$$

$$I_y = \frac{hb^3}{12} = \frac{40(30^3)}{12} = 90000 \ cm^4$$

•Modellazione dell'impalcato su SAP2000: Il modello dell'impalcato si caratterizza da pilastri vincolati a terra con incastri e sezione 0,3x0,4m e travi a cui è stato aumentato il momento di Inerzia (attorno all'asse 3) in modo da simulare una rigidezza flessionale infinita.

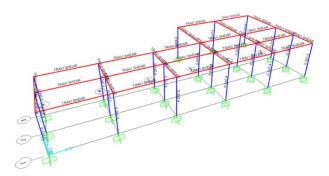
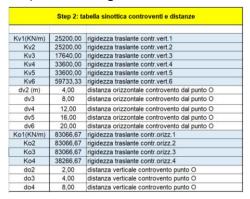
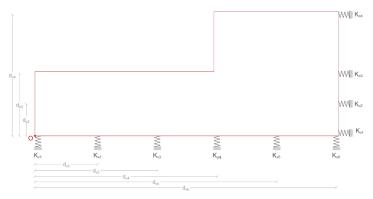


Figura 2_ Modello dell'impalcato con sezioni assegnate

Figura 3_ Modello estruso dell'impalcato

•STEP 1_ Calcolo delle rigidezze traslanti dei controventi dell'edificio [Tabella_1]: La rigidezza traslante di un telaio Shear-type [Formula 1] è direttamente proporzionale al modulo elastico del materiale (*E*) ed alla somma dei momenti di Inerzia dei pilastri (*I*); è invece inversamente proporzionale all'altezza al cubo dei pilastri (*h*). Da qui si evince in modo chiaro che per intervenire sulla rigidezza di un impalcato si può decidere di intervenire sul materiale (tramite il modulo elastico E), sulla sezione dei pilastri (per modificarne il momento di Inerzia) oppure sull'altezza stessa dei pilastri (che essendo elevata al cubo dà un contributo molto rilevante alla rigidezza).

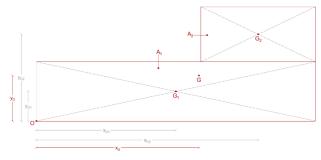

$$k = \frac{12E}{h^3} \sum_{i=1}^n I_i$$


Formula 1_Formula della Rigidezza traslante di un telaio Shear-type costituito da n pilastri.

		Step 1: calcolo delle rigide	zze traslanti dei controv	enti dell'edifi	cio
Telaio 1v	1-7-13	pilastri che individuano il telaio	Telaio 1o	1-2-3-4-5-6	pilastri che individuano il telaio
E (N/mmq)	21000,00	modulo di Young	E		modulo di Young
H (m)	3,00	altezza dei pilastri	Н	3,00	altezza dei pilastri
I_1 (cm^4)	90000,00	momento d'inerzia pilastro 1	<u></u>	160000,00	momento d'inerzia pilastro 1
1_7	90000,00	momento d'inerzia pilastro 7	1_2		momento d'inerzia pilastro 2
I_13	90000,00	momento d'inerzia pilastro 13	<u>L</u> 3	160000,00	
			1_4	160000,00	
			1_5	160000,00	momento d'inerzia pilastro 5
K_T (KN/m)	25200.00	rigidezza traslante telaio 1v	1_6 K T	90000,00 83066,67	momento d'inerzia pilastro 6 rigidezza traslante telaio 1o
K_1 (KWIII)	23200,00	nigidezza trasiante terato iv		03000,07	Ingidezza trasiante terato 10
Telaio 2v	2-8-14	pilastri che individuano il telaio	Telaio 2o	-8-9-10-11-1	pilastri che individuano il telaio
E	21000,00	modulo di Young	E	21000,00	modulo di Young
Н	3,00	altezza dei pilastri	H	3,00	altezza dei pilastri
I_2	90000,00	momento d'inerzia pilastro 2	1_7	160000,00	momento d'inerzia pilastro 7
I_8	90000,00	momento d'inerzia pilastro 8	I_8		momento d'inerzia pilastro 8
I_14	90000,00	momento d'inerzia pilastro 14	1_9		momento d'inerzia pilastro 9
			I_10		momento d'inerzia pilastro 10
			L_11		momento d'inerzia pilastro 11
кт	25200.00	rigidezza traslante telaio 2v	I_12 K T	90000,00 83066,67	momento d'inerzia pilastro 12 rigidezza traslante telaio 20
n_i	25200,00	Ingruezza trasiante teraio zv		03000,07	Ingruezza trasiante teraro zu
Telaio 3v	3-9-15	pilastri che individuano il telaio	Telaio 3o	9-10	pilastri che individuano il telaio
Е	21000,00	modulo di Young	E	21000,00	modulo di Young
Н	3,00	altezza dei pilastri	Н	3,00	altezza dei pilastri
I_3	90000,00	momento d'inerzia pilastro 3	I_13		momento d'inerzia pilastro 13
I_9	90000,00	momento d'inerzia pilastro 9	I_14		momento d'inerzia pilastro 14
I_15	9000,00	momento d'inerzia pilastro 15	I_15		momento d'inerzia pilastro 15
			I_16		momento d'inerzia pilastro 16
			l_17		momento d'inerzia pilastro 17
	10010.00		<u>I_18</u>	90000,00	momento d'inerzia pilastro 18
K_T	1/640,00	rigidezza traslante telaio 3v	K_T	83066,67	rigidezza traslante telaio 3o
Telaio 3v	3-9-15	pilastri che individuano il telaio	Telaio 3o	9-10	pilastri che individuano il telaio
E	21000,00	modulo di Young	E E	21000,00	modulo di Young
H	3,00	altezza dei pilastri	н	3,00	altezza dei pilastri
1_3	90000,00	momento d'inerzia pilastro 3	I_13		momento d'inerzia pilastro 13
1 9	90000,00	momento d'inerzia pilastro 9	I 14		momento d'inerzia pilastro 14
I_15	9000,00	momento d'inerzia pilastro 15	I_15	160000,00	
			I_16	160000,00	
			I_17	160000,00	momento d'inerzia pilastro 17
			I_18	90000,00	momento d'inerzia pilastro 18
K_T	17640,00	rigidezza traslante telaio 3v	K_T	83066,67	rigidezza traslante telaio 3o
Telaio 4v	4 10 16 10	pilastri che individuano il telaio	Telaio 4o	19-20-21	pilastri che individuano il telaio
E E	21000,00			21000,00	
H	3,00	modulo di Young altezza dei pilastri	E H	3,00	modulo di Young altezza dei pilastri
1_4	90000,00	momento d'inerzia pilastro 4	I_19	160000,00	
I_10	90000,00	momento d'inerzia pilastro 10	1_13	160000,00	
I_16	90000,00	momento d'inerzia pilastro 16	I_21	90000,00	momento d'inerzia pilastro 21
I_19	90000,00	momento d'inerzia pilastro 19	,		
K_T		rigidezza traslante telaio 4v	K_T	38266,67	rigidezza traslante telaio 4o
		I make the second second			
Telaio 5v		pilastri che individuano il telaio			
E	21000,00				
H	3,00	altezza dei pilastri			
I_5	90000,00	momento d'inerzia pilastro 5			
I_11 I_17	90000,00	momento d'inerzia pilastro 11 momento d'inerzia pilastro 17			
I_20	90000,00	momento d'inerzia pilastro 17 momento d'inerzia pilastro 20			
K_T	33600,00	rigidezza traslante telaio 5v			
	,				
Telaio 6v		pilastri che individuano il telaio			
E		modulo di Young			
Н	3,00	altezza dei pilastri			
I_6		momento d'inerzia pilastro 6			
I_12		momento d'inerzia pilastro 12			
I_18	160000,00	momento d'inerzia pilastro 18			
1_21 K T	160000,00	momento d'inerzia pilastro 21 rigidezza traslante telaio 6v			

Tabella_1 Calcolo delle rigidezze traslanti dei telai verticali ed orizzontali.

•STEP 2_ Tabella sinottica controventi e distanze [Tabella_2]: In questa tabella vengono raccolti i risultati dei calcoli precedenti e riportate le distanze **d**_{vi} e **d**_{oi} dei diversi controventi dal punto O, punto di origine del sistema di riferimento scelto.



Tabella_2 Tabella sinottica rigidezze traslanti dei telai e distanze dal punto di Origine.

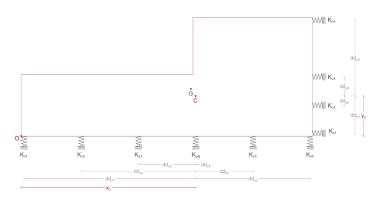
•STEP 3_ Calcolo del centro di Massa [Tabella_3]: Ipotizzando densità di massa dell'impalcato uniforme, il centro delle masse coincide con il centro delle aree, che si determina tramite la formula del centro di vettori paralleli. Semplificando l'impalcato in due semplici rettangoli [Figura_4] con aree A₁ e A₂ e ricavandone i rispettivi centri di aree G₁ e G₂, le formule per determinare le coordinate del centro di massa G si semplificano in:

$$x_G = \frac{Ax_{G_1} + Ax_{G_2}}{Atot} = 11,9 \text{ cm}$$

$$y_G = \frac{Ay_{G_1} + Ay_{G_2}}{Atot}$$
 =3,3 cm

Figura_4 Determinazione del centro di massa G.

Step 3: calcolo del centro di massa			
area_1 (mq)	87,50	misura dell'area superficie 1area 1 (misura)	
x_G1 (m)	10,20	coordinata X centro area 1	
y_G1	2,15	coordinata Y centro area 1	
area_2	33,40	misura dell'area superficie 2	
x_G2	16,20	coordinata X centro area 2	
y_G2	6,30	coordinata Y centro area 2	
Area tot (mq)	120,90	Area totale impalcato	
X_G	11,86	coordinata X centro d'area impalcato (centro massa	
Y G	3,30	coordinata Y centro d'area impalcato (centro massa)	


Tabella_3 Calcolo del centro di massa G.

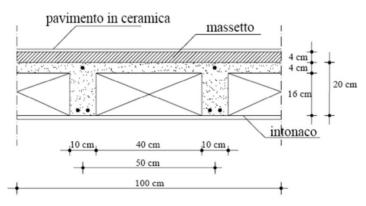
•STEP 4_ Calcolo del centro delle Rigidezze [Tabella_4]: In questa fase si calcolano la rigidezza totale orizzontale, somma delle rigidezze dei singoli controventi orizzontali, la rigidezza totale verticale, somma delle rigidezze dei singoli controventi verticali, e infine la rigidezza torsionale. Utilizzando le informazioni ricavate nello step 2, si calcolano le coordinate del centro delle rigidezze C [Figura_5], analogamente a quanto fatto per il calcolo delle coordinate del centro di massa:

$$\begin{split} x_C &= \frac{k_{v1}d_{v_1} + k_{v2}d_{v_2} + k_{v3}d_{v_3} + k_{v4}d_{v_4} + k_{v5}d_{v_5} + k_{v6}d_{v_6}}{k_{v_tot}} &= 12,2 \text{ cm} \\ y_C &= \frac{k_{o1}d_{o_1} + k_{o2}d_{o} + k_{o3}d_{o_3} + k_{o4}d_{o_4}}{k_{o_tot}} &= 2,8 \text{ cm} \end{split}$$

Ai fini di questa esercitazione la forza orizzontale o sismica viene applicata nel centro delle masse G. Poiché il centro delle masse G ed il centro delle rigidezze C non coincidono perfettamente (pur essendo molto vicini), l'impalcato a causa della forza orizzontale subisce una rotazione rigida (seppur piccola), avendo la forza orizzontale applicata in G un braccio rispetto al punto C. Nel calcolo di tale rotazione rigida interviene la rigidezza torsionale dell'impalcato, direttamente proporzionale alla somma delle rigidezze dei singoli controventi orizzontali e verticali (k_i) per la distanza al quadrato dei singoli controventi dal centro delle rigidezze C (dd_i).

$$k_{\varphi} = \sum k_{vi} \cdot dd_{vi}^2 + \sum k_{oi} \cdot dd_{oi}^2$$

Ko_tot	287466,67	rigidezza totale orizzontale
Kv_tot	194973,33	rigidezza totale verticale
X_C (m)	12,19	coordinata X centro rigidezze
Y_C	2,80	coordinata Y centro rigidezze
dd_v1	-12,19	distanze controvento dal centro rigidezze
dd_v2	-8,19	distanze controvento dal centro rigidezze
dd_v3	-4,19	distanze controvento dal centro rigidezze
dd_v4	-0,19	distanze controvento dal centro rigidezze
dd_v5	3,81	distanze controvento dal centro rigidezze
dd_v6	7,81	distanze controvento dal centro rigidezze
dd_o1	-2,80	distanze controvento dal centro rigidezze
dd_o2	-0,80	distanze controvento dal centro rigidezze
dd_o3	1,20	distanze controvento dal centro rigidezze
dd_o4	5,20	distanze controvento dal centro rigidezze
φ (KN*m)	11735832,61	rigidezza torsionale totale


Figura_5 Centro delle rigidezze C.

Tabella_4 Calcolo delle rigidezze globali e del centro di rigidezza.

•STEP 5_ Analisi dei carichi sismici [Tabella_5]: In questa fase è stata effettuata un'analisi dei carichi sismici per valutare la forza sismica che agisce sul centro di massa, ipotizzando la stratigrafia di un solaio in laterocemento [Figura_6]. Calcolati i *carichi strutturali permanenti* \mathbf{q}_{s} ed il *sovraccarico permanente* \mathbf{q}_{p} , è stato ottenuto il *carico totale permanente* \mathbf{G} [Formula 2]. Ipotizzando una destinazione d'uso abitativa, tramite la normativa NTC2008 ("Norme tecniche per le costruzioni" D.M. 14 Gennaio 2008) è stato poi calcolato il *carico totale accidentale* \mathbf{Q} [Formula 3], ottenuto moltiplicando il *sovraccarico accidentale* \mathbf{q}_{a} per edifici ad uso residenziale e l'area dell'impalcato.

$$G = (q_s + q_p) A_{tot}$$
 (2)

$$Q = q_a \cdot A_{tot} \tag{3}$$

Figura_6 Stratigrafia e geometria del solaio tipo ipotizzato.

CARICHI STRUTTURALI PERMANENTI q_s :

Soletta in c.a.: 1,00 kN/m² Nervature in c.a.: 1,00 kN/m² Laterizi di alleggerimento: 1,76 kN/m²

Peso totale: 3,76 kN/m²

CARICHI PERMANENTI NON STRUTTURALI qp:

Pavimento in piastrelle. : 0,40 kN/m 2 Sottofondo in cls magro.: 0,80 kN/m 2

Intonaco civile: 0,40 kN/m² Divisori ripartiti: 2,00 kN/m² **Peso totale: 3,60 kN/m²**

CARICHI ACCIDENTALI qa:

Per destinazione d'uso civile abitazione: 2,00 kN/m²

In accordo con la suddetta normativa, è stata utilizzata la combinazione sismica per calcolare i pesi sismici **W** [Formula 4], con coefficiente di contemporaneità ψ_{2j} pari a 0,3 per destinazione d'uso abitativa.

$$W = G + \psi_{2j} \cdot Q \tag{4}$$

Il peso sismico W rappresenta la forza peso dell'edificio, data dal prodotto della massa dell'edificio e l'accelerazione di gravità. Ma avendo il sisma un'accelerazione mediamente più piccola di quella gravitazionale, si introduce un coefficiente di *intensità sismica* **c** che varia a seconda della zona sismica in cui è collocato l'edificio [Formula 5].

$$F = W \cdot c \tag{5}$$

Step 5: analisi dei carichi sismici			
q_s (KN/mq)	3,76	carico permanente di natura strutturale	
q_p	3,60	sovraccarico permanente	
q_a	2,00	sovraccarico accidentale	
G (KN)	889,82	carico totale permamente	
Q (KN)	241,80	carico totale accidentale	
ψ	0,30	coefficiente di contemporaneità	
W (KN)	962,36	Pesi sismici	
С	0,10	coefficiente di intensità sismica	
F (KN)	96,24	Forza sismica orizzontale	

Tabella_5 Analisi dei carichi sismici e determinazione della forza sismica agente sull'impalcato.

•STEP 6_ Ripartizione della forza sismica [Tabella_6 e Tabella_7]: In questa fase è stato studiato il comportamento dell'impalcato e gli effetti cinematici che subisce in due casi:

CASO A: la forza sismica agisce in direzione x [Tabella_6]

CASO B: la forza sismica agisce in direzione y [Tabella_7]

Infatti, poiché il centro delle rigidezze ed il centro delle masse (dove viene applicata la forza sismica) non coincidono perfettamente, seppure risultano molto vicini, l'impalcato può subire una rotazione rigida oltre che un traslazione rigida, orizzontale nel caso A e verticale nel caso B.

La traslazione rigida (orizzontale \mathbf{u} o verticale \mathbf{v}) [Formula 6] è direttamente proporzionale alla forza sismica \mathbf{F} agente (in direzione \mathbf{x} nel caso \mathbf{A} e in direzione \mathbf{y} nel caso \mathbf{B}) ed inversamente proporzionale alla somma delle rigidezze $\mathbf{k}_{v/o}$ (orizzontali nel caso \mathbf{A} e verticali nel caso \mathbf{B}).

$$v/u = \frac{F_{y/x}}{k_{v/o_tot}}$$
 (6)

La *rotazione rigida* ϕ [Formula 7] è direttamente proporzionale al momento torcente M e inversamente proporzionale alla rigidezza torsionale totale K_{ϕ} .

$$\varphi = \frac{M}{k_{\varphi}} \quad (7)$$

Una volta calcolati gli effetti cinematici, è possibile stabilire la forza trasferita sui singoli controventi nei due casi di carico.

Nel caso A [Tabella_6], in cui la forza sismica agisce in direzione x, la forza ripartita su ogni controvento orizzontale [Formula 8] sarà direttamente proporzionale alla rigidezza orizzontale totale k_{o_tot} e alla somma tra la traslazione orizzontale u e la rotazione rigida ϕ , moltiplicata per la distanza dd_o del singolo controvento dal centro delle rigidezze C.

$$F_{o_{-}n} = k_{o_{-}n}(u + \varphi \cdot dd_{o_{-}n}) \quad (8)$$

Mentre la forza ripartita su ogni controvento verticale [Formula 9] sarà direttamente proporzionale al prodotto tra la rigidezza verticale totale K_{v_tot} , la rotazione rigida ϕ e la distanza dd_v del singolo controvento dal centro delle rigidezze C.

$$F_{v_{-}n} = k_{v_{-}n} \cdot \varphi \cdot dd_{v_{-}n} \tag{9}$$

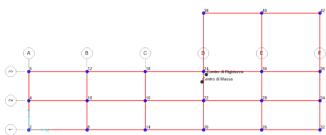
Nel caso B [Tabella_7], in cui la forza sismica agisce in direzione y, la forza ripartita su ogni controvento orizzontale [Formula 10] sarà direttamente proporzionale al prodotto tra la rigidezza orizzontale totale K_{o_tot} , la rotazione rigida ϕ e la distanza dd_o del singolo controvento dal centro delle rigidezze C.

$$F_{0n} = k_{0n} \cdot \varphi \cdot dd_{0n} \tag{10}$$

Mentre la forza ripartita su ogni controvento verticale [Formula 11] sarà direttamente proporzionale alla rigidezza verticale totale k_{v_tot} e alla somma tra la traslazione verticoale v e la rotazione rigida ϕ , moltiplicata per la distanza dd_v del singolo controvento dal centro delle rigidezze C.

$$F_{\mathbf{v}\,n} = k_{\mathbf{v}\,n}(\mathbf{v} + \boldsymbol{\varphi} \cdot dd_{\mathbf{v}\,n}) \quad (11)$$

96,24


Step 6: ripartizione forza sismica lungo X (CASO A)			
M (KN*m)	-47,90	momento torcente (positivo se antiorario)	
u_o (m)	0,0003	traslazione orizzontale	
φ	-0,000004	rotazione impalcato (positiva se antioraria)	
Fv1 (KN)	1,25	Forza sul controvento verticale 1	
Fv2	0,84	Forza sul controvento verticale 2	
Fv3	0,30	Forza sul controvento verticale 3	
Fv4	0,03	Forza sul controvento verticale 4	
Fv5	-0,52	Forza sul controvento verticale 5	
Fv6	-1,90	Forza sul controvento verticale 6	
Fo1	28,76	Forza sul controvento orizzontale 1	
Fo2	28,08	Forza sul controvento orizzontale 2	
Fo3	27,40	Forza sul controvento orizzontale 3	
Fo4	12,00	Forza sul controvento orizzontale 34	
	96,24		
		27,81	
		27,81	
		27,81	
		12,81	

Tabella_6 Ripartizione della forza sismica lungo la direzione x (CASO A)

Step 7: ripartizione forza sismica lungo Y (CASO B)			
M (KN*M)	-32,32	momento torcente	
v_o (KN)	0,0005	traslazione verticale	
φ	-0,000003	rotazione impalcato	
Fv1 (KN)	13,28	Forza sul controvento verticale 1	
Fv2	13,01	Forza sul controvento verticale 2	
Fv3	8,91	Forza sul controvento verticale 3	
Fv4	16,60	Forza sul controvento verticale 4	
Fv5	16,23	Forza sul controvento verticale 5	
Fv6	28,20	Forza sul controvento verticale 5	
Fo1	0,64	Forza sul controvento orizzontale 1	
Fo2	0,18	Forza sul controvento orizzontale 2	
Fo3	-0,27	Forza sul controvento orizzontale 3	
Fo4	-0,55	Forza sul controvento orizzontale 4	
	96,24		
		12,44	
		12,44	
		8,71	
		16,58	
		16,58	
		29,48	
		96.24	

Tabella_6 Ripartizione della forza sismica lungo la direzione y (CASO B)

•Analisi degli effetti cinematici sul modello di SAP2000: Dopo aver ricavato il centro delle masse G, il centro delle rigidezze C e la forza sismica F, è possibile effettuare un'analisi degli effetti cinematici che subisce l'impalcato, tramite il modello già realizzato in precedenza su SAP2000. Per ottenere la condizione di impalcato rigido è necessario applicare un vincolo interno, il DIAPHRAM, che serve ad imporre una rotazione uguale attorno ad un asse (nel nostro caso l'asse z). Questo vincolo è stato assegnato a tutti i punti a quota z=3 [Figura_7]., compresi il centro delle masse G ed il centro delle rigidezze C [Figura_6].

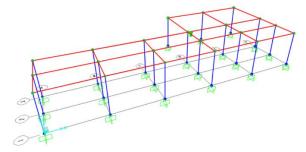
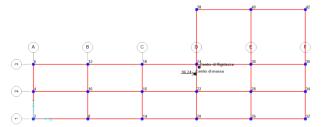



Figura 7_ Assegnazione del DIAPHRAM a tutti i punti z=3

•Nel caso A, ovvero nel caso di una forza sismica agente in direzione x (direzione orizzontale), l'impalcato in analisi subisce una traslazione orizzontale ed una rotazione oraria, seppure molto piccola [Figura_8], così come ci avevano mostrato i risultati della Tabella_6.

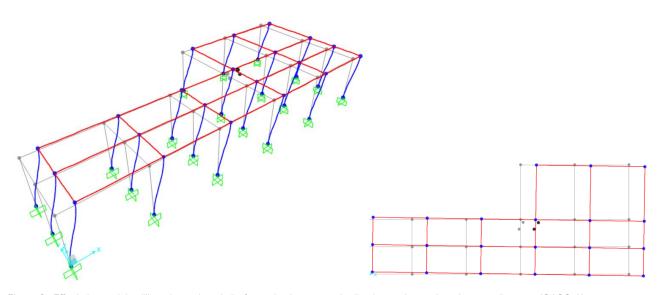


Figura 8_ Effetti cinematici sull'impalcato dovuti alla forza sismica agente in direzione orizzontale nel centro di massa (CASO A).

•Nel caso B, ovvero nel caso di una forza sismica agente in direzione y (direzione verticale), l'impalcato subisce una traslazione verticale ed una rotazione antioraria, abbastanza contenuta anche in questo caso [Figura_9], così come ci avevano mostrato i risultati della Tabella_7.

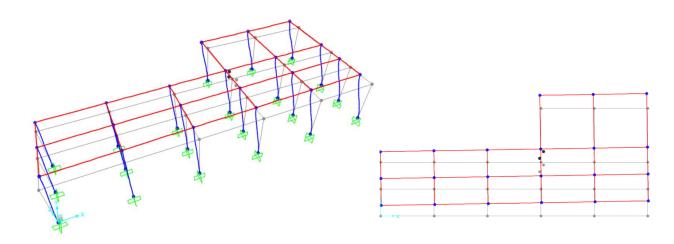


Figura 9_ Effetti cinematici sull'impalcato dovuti alla forza sismica agente in direzione verticale nel centro di massa (CASO B).

• CONCLUSIONI: In entrambi i casi l'impalcato in analisi subisce una traslazione più importante (orizzontale o verticale a seconda della direzione della forza sismica), mentre la rotazione rimane abbastanza contenuta, poiché il centro di massa ed il centro delle rigidezza, seppure non coincidano, risultano molto vicini.