Esercitazione 2 Laboratorio di progettazione strutturale 1M

Dimensionamento di un Graticcio

Enriko Gjoka

Per il dimensionamento di un graticcio di dimensioni 18 x 24 m, costituita da una maglia di 1,5 x 1,5 m. La struttura dovrà sostenere un carico complessivo di 72 kn/m² derivanti dai 6 piani sovrastanti, i quali hanno un'incidenza di 12 kn/m² ciascuno. Si definiscono le Grid Lines con un modulo di 2x2x1 per l'impostazione della griglia di modellazione.

Si prosegue con l'inserimento del materiale, scegliendo un Calcestruzzo C35/45 , seconda la normativa italiana UNI del 2006.

La modellazione di una Superficie è data dal comando Draw poliarea, alla quale vendono assegnate i quattro vincoli di cerniera all'estremità come appoggio.

Successivamente si procede per la discretizzazione della superficie.

La struttura della superficie viene attribuita attraverso la Shell Section Data, scegliendo Thick come tipologia della superficie e indicando 1 metro come spessore preliminare della struttura.

Selezione della superficie, Assign, Area Section Assegno la sezione precedentemente creata all'oggetto modellato.

Carico Shell viene assegnato all'area con un contributo da 72kn/m² dovuto dalla presenza di 6 piani sovrastanti, i quali contribuiscono con 12 kn/m² ciascuno

😼 🖪 🖿 🧔

.

Si esegue l'analisi.

Per la visione dei momenti si incentra nei momenti 1-1 e momenti 2-2 che vengono determinati dalla presenza degli assi.

ын 19 - С -	Home Ins Lincolla	viso Dis - <u>Ansi</u> - G	jted egnoti C≤-	yout dip yout dip 19 E - 4	ananu a agina - A a	Formula V = [] - EF []	Dati Re	sisone 1 1 1 1 1	Visualtera S leste a ce Unisci e al	Cuida po línco al cen		Numer Rig -		- 	matterio Nilborais	e fomati • tabel	icoma di la cel		Rimine - Formatio -	Σ • 2Υ Π • ordin Ø • nto	Comment Comment Comment Comment Comment Comment Comment Comment Comment Comment Comment	Candida Riavarian T
arrate D	APRILE V III S	N - 2 B		allers.	_	P.		Alinua	ni la		16		Norei	h	_	79.9			CH M		tfra	Eservelores
anileration	(m) 0, 00/m) q. (0)m)	a (0077)	4, (KWH)	Ace (FE)	Heat ON'r	1.0810	t _{et} doinn	t _{is} donné	t _a øknm	2	1 1	b (cm)	5, (cm)	4000	D Here (CTR)	10	N.	arca (rr²) (non traffic is (1947)		
-0.00	3.42	2,05	2,00	49,54	3,00	1000.00	490,00	321, 30	35,08	19,83	0,42	2,53	90,00	26,35	5,80	160,35	55.90	0.10	0.17	4.13		
12.00	2.00	2.00	300	101,30	5.16	1650.03	150.00	39(3)	31.08	9.62	0,43	2.53	42,00	12.57	5.80	17.57	20.00	c.10	231	1.00		
eta 👷	Highto Maxadi fair m	actiala In skoutike	ds armal	• •	a 🖉																w -	1 + U219

Attraverso l'ausilio del foglio excell,

con l'inserimento del momento massimo di uno dei due momento M1-1 o M2-2

mi definisce l'altezza minima.

La sezione suggerita da Excell viene creata in Sap_2000

Con l'inserimento del nome della sezione e delle opportune dimensioni, per finire l'assegnazione del materiale, cioè il Cls 35/45 precedentemet

Accanto alla superficie si inizia a costituire la struttura del Graticcio

Creando un offset di 10 m attraverso il comando "punto" per iniziare a disegnare i frame

Realizzato il reticolo si prosegue alla selezione dei Frame e

a sua volta la divisione dei Frame per identificare un nodo rigido alla struttura.

Si esegue con l'inserimento delle 4 cerniere di appoggio

Arretrate per un miglioramento al momento.

1 7 7 7 7 1 M

Si esegue nuovamente l'assegnazione dei carichi facendo una gerarchia tra parte centrale e bordo.

11

Avvenuta la modellazione e l'assegnazione dei carichi si lancia nuovamente l'analisi e si osserva l'andamento della struttura.

Tra cui il momento, la torsione.

l valori che vengono visualizzati, devono essere confrontati ed eventualmente riaggiornare le sezioni affinché sia verificato

V A = 0 * 4 * E <u>0. K 4 F</u>

bken	1152000	des 🧶	2.8	chrenslor		device :	nd - Mada	les compar	121191											rian ko diokos 🛛 💽	2	<u>,</u>
H -		51 Uin 	egne a	10001d -	- A - - A - 2 - A	Konnda 4 = • =	- ⊒[≉ = ⊒[≉		visual cas Listes ca Unice al	er er		Rect	≺. p. 14	- 		s snak	isano Si		katid v Lanna v	T · ST	Conner O : Twas	Draw Law
	· Ø	-		ite ite Alte		5		• •	• 4				kara a		••••••	·	67 B R	·* 🖻	bara tri - Selle	Her"	totenari bi	Firsten:
	9: X	ا یکی - د	20 D	5	r		T Sire			iκ	c			- 26	r.	¢	8	1.23	т	U		
M S	e garante	1.00mit	Looni	0.16200	eastar	N. 383	ta cent	- La contra	i na permiti	Contraction of the	10,	r	3,02	1,970	534	in the state	н	a.	Sector, N	ad a dia basis dia s		
11 11	2 12	250	230	12.00	5.00 8.24	0000.00 1000.00	450,00 (50,00 (50,00)	291.32	25.00 25.00 2.01	9.62	146	2.32	91.54 91.35 71.54	160 Kg 22 17 2 17	1.04 1.00 1.24	14037 1700	2): XX	400 0.0	120 120 6.2	104 104 100		
																					_	
2.0	kgro∣* surs≣kror	cta a Cosebia	ds annai	tn (E)									1						# G	53	-
£	teo Milapó	un revu	uine Is ri	iana 🦄	20	·	*	A	. 0		-		3	9. R	-				3	ST A 12 4		D' IS

- - - /

🧶 er in gill 🖉 diere

• ×

- 5