QUARTA ESERCITAZIONE _ MICHELENA, SACRISTAN.

TRAVE VIERENDEEL

1)INTRODUZIONE: in questa esercitazione vedremo il comportamento di una trave Vierendeel a sbalzo incastrata a setti in c.a.

Riportiamo di seguito la configurazione geometrica degli elementi .

2) RICHIAMI TEORICI:

$$\frac{5}{4}Fl + \frac{5}{4}Fl - Fl - 2Fl - 3Fl - 4Fl - 5Fl = \frac{5}{2}Fl - 15Fl \neq 0$$
$$\frac{5}{2}Fl - \frac{30}{2}Fl = -\frac{25}{2}Fl$$

Questo è il valore momento totale prodotto dalla struttura che verrà compensato con le reazioni del setto portante.

New Model>Grid Only> definiamo la griglia

Disegno dei Setti in c.a. : Nella prima campata a sinistra disegniamo le travi e i pilastri per poi definire i setti.

Useremo ora il comando Draw Poly Area , successivamente eliminiamo le travi e i pilastri coincidenti con il setto .

Per dare a Sap la possibilità di calcolare in maniera definita e precisa una superficie, faremo l'operazione di DISCRETIZZARLA, creando così tante piccole aree all'interno del setto, riducendo l'area principale in tante geometrie semplici e interconnesse tra loro.

<u>Selezioniamo l'area che vogliamo discretizzare</u> : Edit>Edit Areas>Divide Areas> scegliamo l'opzione di poter dividere l'area secondo una geometria regolare con dimensioni da noi scelte, in questo caso 30x30 cm .

<u>Vincoliamo il setto :</u> Avendo discretizzato l'area del setto, vincoleremo ogni punto con un incastro simulando il vero comportamento che questo ha quando è vincolato a terra. Selezioniamo tutti i punti (joints) alla base del setto > Assign>Joints>Restraints>Incastro.

Controlleremo ora che gli estremi superiori del setto e le travi siano correttamente coincidenti per evitare qualsiasi errore nella modellazione dell'incastro tra gli elementi e possibili risultati non attendibili. Selezioniamo quindi gli estremi interessati e usiamo il comando Merge Joints.

Assegnazione sezione al setto:

Display Options > Areas >Local Axes>per visualizzare nel modello gli assi locali corrispondenti all'area del setto discretizzata.

Define>Section Properties>Area Sections> Attraverso il modello di Sap 2000 chiamato SHELL si simulano sia il comportamento a piastra che a lastra (comprende sia il comportamento assiale che flessionale).

Add New Section > Sceglieremos il modello SHELL-THICK come Type (modello che considera i comportamenti di trave di Bernoulli e Timoshenko).

Materiale = Calcesctruzzo C28/35

Thickness = setto robusto da 80 cm

Selezioniamo tutta l'area e gli assegniamo la sezione con Assign>Area>Area Section> "SETTO".

Section Name SETTO	Display Color
Section Notes Modify/	Show
уре	Thickness
O Shell - Thin	Membrane 1
Shell - Thick	Bending 1
O Plate - Thin	Material
O Plate Thick	Material Name + C28/35
O Membrane	Material Angle
O Shell - Layered/Nonlinear	
Haddi /Charry Laura Da Feiling	Time Dependent Properties
mouny/show Layer Demision	Set Time Dependent Properties
Concrete Shell Section Design Parameters	Stiffness Modifiers Temp Dependent Properties
Modify/Show Shell Design Parameters	Set Modifiers Thermal Properties

Assegnazione sezioni travi : Assegniamo ora una sezione in cls anche alle travi con Assign>Frame Section>TRAVI> cls C28/35 , dimensioni : 30 x 50 cm .

Section Name	TRAVI	Display Color	
Section Notes Modify/Show Notes			
Dimensions		Section	
Depth (t3)	0,5	2	
Width (t2)	0,3	• • •	
		3	
		• • • •	
		Properties	
Material	Property Modifiers	Section Properties	
+ C28/35	∽ Set Modifiers	Time Dependent Properties	
Cana	rete Dainforcement		

Completamento del modello : View>Set 3d View> piano xz. Con il comando CTRL + R replichiamo tutte le proprietà del setto e delle travi in direzione y e z. Avremo così disegnato tutti gli elementi di supporto delle travi Vierendeel che disegneremo in seguito.

Disegno Travi Vierendeel: Per disegnarle a sbalzo creeremo due diverse sezioni da assegnare alle travi e ai pilastri sapendo che i pilastri dovranno essere infinitamente rigidi (interverremo sulla sezione incrementando il valore del momento di inerzia o sul modulo elastico E del materiale). Sappiamo che il modello di trave Vierendeel ha un comportamento come quello di un telaio Shear Type (ribaltato).

Sappiamo inoltre che per realizzare una trave Vierendeel avremo bisogno di pilastri larghi di dimensioni almeno 80 x 50 cm e che la loro rigidezza flessionale è molto più grande di quella delle travi.

Partiremo con una sezione dei pilastri pari a 80 x 50 cm e travi 50 x 30 cm e controlleremo i diagrammi dei risultati fino ad approssimare il diagramma di T e M del modello teorico.

General Data		Kectangular Section		
Material Name and Display Color Material Type Material Grade	MAT_PIL_VIERENDEEL	Section Name Section Notes	PIL_VIERENDEEL Modify/Show Notes	Display Color
Material Notes	Modify/Show Notes	Dimensions		Section
Veight and Mass Weight per Unit Volume 24,99 Mass per Unit Volume 2,548	Units 226 KN, m, C ~	Depth (13) Width (12)	0,8	
sotropic Property Data Modulus Of Elasticity, E Poisson, U	8230800000000)			Properties
Coefficient Of Thermal Expansion, A Shear Modulus, G	1,000E-05 13461667,	Material + MAT_PIL_VIEREND	EEL V Set Modifiers	Section Properties Time Dependent Properties
Other Properties For Concrete Materials Specified Concrete Compressive Stree Expected Concrete Compressive Stree	ngth, fc 28000,	Con	Crete Reinforcement OK Cance	4
Lightweight Concrete Shear Strength Reduction Factor		1		
Switch To Advanced Property Display	/			

Incastriamo ora le travi Vierendeel ai setti.

<u>Analisi :</u> Avviamo l'analisi considerando solamente il peso proprio degli elementi e delle forze poste come carico puntuale su ogni pilastro della Trave Vierendeel , pari a 1000kN (non derivanti da calcoli specifici).

Il comportamento che vogliamo ottenere è quello di un diagramma di Taglio "scalettato" e costante su tutta la trave. Il diagramma dei Momenti invece avrà per ogni porzione della trave una pendenza differente, data dall'andamento del taglio.

