ESERCITAZIONE 4 _ DIMENSIONAMENTO DI UN EDIFICIO MULTIPIANO INTELAIATO IN CALCESTRUZZO ARMATO

_ Elisabetta Moroni

L'esercitazione assegnata prevede il dimensionamento di un edificio intelaiato, di 3 piani fuori terra, da modellare con l'ausilio del software SAP 2000.

SCHEMA DI SEZIONE DELL'EDIFICIO MULTIPIANO

SCHEMA DI PIANTA DELL'EDIFICIO MULTIPIANO

Apro un nuovo file, imposto le unità di misura (KN, m, C) e i materiali di default (Italy) e imposto la griglia (*File_ New Model_Grid only*).

Imposto le grid lines (numero di griglie 2 per gli assi globali x, y e z) ed il grid spacing che corrisponde al passo strutturale della campata principale – 8 m, in direzione x – e secondaria – 5 m, in direzione y – e l'altezza di interpiano – 3 m, in direzione z –.

Prima di procedere alla modellazione di un singolo piano, così da replicarlo in funzione delle intenzioni di progetto:

--> Definisco i Load Pattern:

- **PP** (Peso proprio) moltiplicatore di peso proprio =1
- **Qs** (Carico strutturale) moltiplicatore di peso proprio =0
- **Qp** (Carico permanente) moltiplicatore di peso proprio =0
- Qa (Carico accidentale) moltiplicatore di peso proprio =0

Define Load Patterns

Load Patterns						Click To:
Load Pattern Name	Туре		Self Weight Multiplier	Auto Lateral Load Pattern		Add New Load Pattern
DEAD	Dead	~ 1			\sim	Add Copy of Load Pattern
DEAD PP	Dead Dead	1				Modify Load Pattern
Qa Qp	Dead Dead	0)			Modify Lateral Load Pattern
Qs Fx	Dead Dead	0)			Delete Load Pattern
Fy	Dead	C)			
						Show Load Pattern Notes
						OK Cancel
						OK

--> Definisco la **Combinazione di carico SLU** (*Define_Load Combination_Add new combo_linear Add_*)

- PP (Peso proprio) moltiplicato per il coefficiente di sicurezza (scale factor) 1,3
- **Qs** (Carico strutturale) moltiplicato per il coefficiente di sicurezza (scale factor) 1,3
- **Qp** (Carico permanente) moltiplicato per il coefficiente di sicurezza (scale factor) 1,5
- Qa (Carico accidentale) moltiplicato per il coefficiente di sicurezza (scale factor) 1,5

	(User-Generated)	SLU						
Notes		Mo	Modify/Show Notes					
Load Combination Type		Linear A	dd	~				
ptions								
Convert to User Lo	ad Combo Create No	nlinear Load Cas	e from Load Combo					
efine Combination of Los	ad Case Results							
Load Case Name	Load Case Type	Mode	Scale Factor					
Load Case Name PP	Load Case Type	Mode	Scale Factor					
Load Case Name PP PP	Load Case Type Uinear Static Linear Static	Mode	Scale Factor 1,3 1,3					
Load Case Name PP Qs Qs	Load Case Type Linear Static Linear Static Linear Static	Mode	Scale Factor	Add				
Load Case Name PP Qs Qp Qa	Load Case Type Linear Static Linear Static Linear Static Linear Static Linear Static	Mode	Scale Factor 1,3 1,3 1,3 1,5 1,5 1,5	Add Modify				
Load Case Name PP Qs Qp Qa	Load Case Type Linear Static Linear Static Linear Static Linear Static Linear Static	Mode	Scale Factor 1,3 1,3 1,3 1,5 1,5 1,5	Add Modify Delete				

Definisco il materiale (*Define_Materials_Add New Materials – "Italy, Concrete, NTC 2008, CLS 35/45"*) e le Sezioni (*Define_Section properties_Frame section*) distinguendole in Travi principali (0,8 x 0,3 m), secondarie (0,4 x 0,3 m), di bordo (0,4 x 0,3 m), a ginocchio (0,4 x 0,3m); i Pilastri angolari (0,4 x 0,3 m) perimetrali (0,5 x 0,3 m) e centrali (0,6 x 0,3) del piano 1, 2, 3 e 4 e i pilastri scala (0,3 x 0,3 m).

aterials	Click to:
B450C C28/35	Add New Material
C35/45 S355	Add Copy of Material
Tendon	Modify/Show Material
	Delete Material
	Show Advanced Properties
	ОК
	Canaal

Disegno i pilastri e le travi del primo modulo (*Draw_Frame/Cable*) e le replico per il numero di campate desiderate in direzione x ed y, variando l'interasse strutturale dell'ultima campata (5 metri invece che 8) e modellando un aggetto di 3 m, costruendoli entrambi con l'offset e lo strumento di disegno Special Joint, poi disegno le travi.

Assegno le sezioni agli elementi strutturali del piano che ho disegnato (*Assign_Frame Section*) e i vincoli esterni (*Assign_Joint_Restraints_Incastro*).

Attribuisco i carichi.

Solaio in latero cemento.

ANALISI DEI CARICHI

GK1 (carico permanente strutturale_peso proprio solaio) TOT: 3,12 KN/m2

peso soletta c.a.: 1,00 KN/m2

peso travetti: 1,20 KN/m2

peso pignatte: 0,92 KN/m2

GK2 (carico permanente non strutturale) TOT: 4,83 KN/m2

pavimento in gress: 0,40 KN/m2

allettamento+massetto: 2,40 KN/m2

isolante: 0,030 KN/m2

tramezzi (incidenza): 1,60 KN/m2

intonaco: 0,40 KN/m2

Qk (carico variabile) TOT: 5,00 KN/m2

Cat. A (civile abitazione): 5,00 KN/m2

Per procedere all'analisi dei carichi valuto l'area di influenza delle travi principali centrali (5 m) perimetrali (2,5 m) e di quelle che portano l'aggetto (4 m) e assegno i carichi così determinati.

Schema della gerarchia delle travi

Schema delle aree di influenza

Assegno dunque i relativi carichi (*Assign_Frame Loads_Distribuited*)

-					
ation Assignments Loads Des	sign		Location Assignments Loads Des	sign	
dentification			Identification		
Label 23	Design Proced	ure Concrete Frame ~	Label 29	Design Proced	dure Concrete Frame
Load Pattern	Qa	Assign Load	Load Pattern	Qa	Assign Load.
Distributed Force			Distributed Force		
Coordinate System	GLOBAL		Coordinate System	GLOBAL	_
Load Direction	Gravity	KN, m, C 🗸	Load Direction	Gravity	KN, m, C
Start Force/Length	25, at 0,		Start Force/Length	12,5 at 0,	
End Force/Length	25, at 8,		End Force/Length	12,5 at 8,	Depet All
Load Pattern	Qp	Reset All	Load Pattern	Qp	Reservan
Distributed Force			Distributed Force		_
Coordinate System	GLOBAL		Coordinate System	GLOBAL	
Load Direction	Gravity		Load Direction	Gravity	
Start Force/Length	24,15 at 0,		Start Force/Length	12,1 at 0,	
End Force/Length	24,15 at 8,		End Force/Length	12,1 at 8,	
Load Pattern	Qs		Load Pattern	Qs	Undate Displa
Distributed Force		Update Display	Distributed Force		Opdate Displa
Coordinate System	GLOBAL	Modify Display	Coordinate System	GLOBAL	Modify Displa
Load Direction	Gravity		Load Direction	Gravity	
Start Force/Length	15,6 at 0,	ОК	Start Force/Length	7,8 at 0,	ОК
E-15	100.10		End Enroe/Length	7 2 at 2	

Con il comando replicate – così da non perdere l'assegnazione del materiale, delle sezioni e l'assegnazione dei carichi – finisco la modellazione dell'edifico multipiano (*Replicate_Linear_in direzione z: 3 m_Increment data_Number:3*) e procedo alla corretta assegnazione della sezione dei pilastri dei piani superiori, precedentemente determinata.

Disegno ora le scale e i nuclei ascensore (*draw poliarea*; discretizzo superficie: *Edit_Edit Area_Divide_ Divide Area into objects of this maximum size 0,5-0,5*) ed assegno le opportune sezioni dei frame e dell'area, già definite (trave a ginocchio, pilastro scala e Setto).

Impongo a SAP la condizione dell'impalcato rigido (*Assign_Joint_Costraints_Define Joint constraints_ Diaphragm_Assign a different Diaphragm constraint to each different selected Z level*).

Avvio l'analisi e esamino i risultati del Momento e della forza Assiale sull'impalcato per la combinazione di carico SLU.

Estraggo le tabelle per i singoli elementi strutturali (pilastri dei diversi piani, travi principali, secondarie, di bordo, travi a ginocchio, pilastri scala), le ordino e procedo al dimensionamento a presso-flessione per i pilastri e a flessione per le travi.

I

f _{ck}	f _{cd}	b	h	Α	lx	Wx	Ν	Mx	е	h/6	sigma_N	sigma_M	sigma_max	
Мра	Мра	cm	cm	cm ²	cm ⁴	cm ³	KN	KNm	cm	cm	Мра	Mpa	Мра	
35,0	19,8	40	40	1600	213333	10667	2260,00	13,00	0,58	6,67	14,13	1,22	15,34	Pilastro angolare_1
35,0	19,8	40	50	2000	416667	16667	3050,00	50,00	1,64	8,33	15,25	3,00	18,25	Pilastro perimetrale_1
35,0	19,8	40	30	1200	90000	6000	1980,00	15,00	0,76	5,00	16,50	2,50	19,00	Pilastro perimetrale_1
35,0	19,8	40	50	2000	416667	16667	3220,00	18,00	0,56	8,33	16,10	1,08	17,18	Pilastro centrale_1
35,0	19,8	40	30	1200	90000	6000	1700,00	16,00	0,94	5,00	14,17	2,67	16,83	Pilastro angolare_2
35,0	19,8	40	50	2000	416667	16667	2300,00	70,00	3,04	8,33	11,50	4,20	15,70	Pilastro perimetrale_2
35,0	19,8	40	50	2000	416667	16667	2410,00	60,00	2,49	8,33	12,05	3,60	15,65	Pilastro centrali_2
35,0	19,8	30	30	900	67500	4500	1130,00	20,00	1,77	5,00	12,56	4,44	17,00	Pilastro angolare_3
35,0	19,8	30	40	1200	160000	8000	1520,00	54,00	3,55	6,67	12,67	6,75	19,42	Pilastro perimetrale_3
35,0	19,8	30	45	1350	227813	10125	1610,00	65,00	4,04	7,50	11,93	6,42	18,35	Pilastro centrale_3
35,0	19,8	30	30	900	67500	4500	566,00	18,00	3,18	5,00	6,29	4,00	10,29	Pilastro angolare_4
35,0	19,8	30	30	900	67500	4500	1100,00	5,00	0,45	5,00	12,22	1,11	13,33	Pilastro Scala
	Р	ress	ofles	sione	e in ca	si di m	noderata	eccen	tricità:	h/6 <	e=M/N	l < h/2		
f _{ck}	f_{cd}	b	h	Α	lx	Wx	Ν	Mx	е	h/6	h/2	u	sigma_max	
Мра	Мра	cm	cm	cm ²	cm ⁴	cm ³	KN	KNm	cm	cm	cm	cm	Mpa	
35,0	19,8	30	40	1200	160000	8000	765,00	58,00	7,58	6,67	20,00	12,42	13,69	Pilastro perimetrale_4
35,0	19,8	30	40	1200	160000	8000	810,00	80,00	9,88	6,67	20,00	10,12	17,78	Pilastro centrale_4

M _{max} (KN*m)	f _{yk} (N/mm ²)	f _{yd} (N/mm ²)	f _{ck} (N/mm ²)	f _{cd} (N/mm ²)	β	r	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	н	H/I	area (m ²)	eso unitario (KN/m)
536,00	450,00	391,30	35,00	19,83	0,43	2,33	30,00	69,81	5,00	74,81	55,00	0,09	0,17	4,13	TRAVE PRINCIPALE 0,30*0,80
93,00	450,00	391,30	35,00	19,83	0,43	2,33	30,00	29,08	5,00	34,08	52,00	0,07	0,16	3,90	TRAVE SECONDARIA 0,30*0,40
40,00	450,00	391,30	35,00	19,83	0,43	2,33	30,00	19,07	5,00	24,07	52,00	0,07	0,16	3,90	TRAVE BORDO 0,30*0,40
73,00	450,00	391,30	35,00	19,83	0,43	2,33	30,00	25,76	5,00	30,76	80,00	0,10	0,24	6,00	TRAVE GINOCCHIO 0,30*0,40

Assegno le nuove sezioni dimensionate al modello.

Travi principali (0,8 x 0,3 m_Verificata), travi secondarie (0,4 x 0,3 m_Verificata), travi di bordo (0,4 x 0,3 m_Verificata), travi a ginocchio (0,4 x 0,3m_Verificata);

Pilastri angolari _1 (0,4 x 0,5 m)

Pilastri perimetrali_1 (0,4 x 0,5 m)

Pilastri centrali_1 (0,4 x 0,5)

Pilastri angolari _2 (0,3 x 0,4 m)

Pilastri perimetrali_2 (0,4 x 0,5 m)

Pilastri centrali_2 (0,4 x 0,5 m)

Pilastri angolari _3 (0,3 x 0,3 m)

Pilastri perimetrali_3 (0,3 x 0,4 m)

Pilastri centrali_3 (0,3 x 0,5m)

Pilastri angolari _4 (0,3 x 0,3 m)

Pilastri perimetrali_4 (0,3 x 0,4 m)

Pilastri centrali_4 (0,3 x 0,4 m)

Pilastri scala (0,3 x 0,3 m).

Definisco le due forze orizzontali Fx e Fy (*Define load pattern*, 1000 KN ciascuna) e le applico al punto che su z=12, con il dovuto constraints, coincide al centro di massa, per verificare che coincida con il centro delle rigidezze, affinché non si generino rotazioni dell'impalcato, determinate dalla presenza degli elementi di irrigidimento (scale e gabbie ascensori, setti).

Osservo che è presente rotazione e che quindi il centro delle rigidezze non coincide con il centro di massa.

			••••	
		•	••••	
	•			
↓ →×				