# Laboratorio di progettazione strutturale 1M – Prof. Ginevra Salerno

## Studente: Luca Santilli

## Esercitazione 1

Disegno la pianta tipo del mio caso di progetto su AutoCAD tramite un modulo 2,5x2,5x2,5 che si ripete 4 volte lungo l'asse x e 12 lungo l'asse y, ottenendo così una travatura reticolare 10mx30mx2,5m:

- Asse X: 10m
- Asse Y: 30m
- Asse z: 2,5m



Per quanto riguarda la distribuzione dimensiono Carico limite ultimo e Carico limite d'esercizio:

- Carico Limite Ultimo qu =  $\gamma s^*qs + \gamma p^*qp^* \gamma a^*pa$  dove  $\gamma s = 1,3 \gamma p = 1,5 \gamma a = 1,5$
- **Carico Limite d'Esercizio** qE = Ys\*qs + Yp\*qp + Ya\*qa dove Ys,Yp,Ya = 1

Quindi:

 $\mathbf{qu} = 10,1 \text{ KN/m}^2$ ,  $\mathbf{qE} = 5,5 \text{ KN/m}^2$ 

A questo punto calcolo le Aree di influenza nodali.

Ho 3 tipi diversi di pilastri:

- A: Ai = 21,875 mq
- B: Ai = 6,25 mq
- C: Ai = 3,125 mq



Per determinare il carico sui nodi si moltiplica qu con Ai con Np (numero piani, 3):

 $\mathsf{FA}=662,8\;\mathsf{KN}$  ,  $\mathsf{FB}=189,3\;\mathsf{KN}$  ,  $\mathsf{FC}=94,6\;\mathsf{KN}$ 

Apro il programma SAP2000:

- creo un nuovo modello scegliendo il Template della griglia e facendo attenzione a scegliere come parametri KN,m,C
- imposto gli assi cartesiani x,y,z e i relativi valori numerici

| v Model                                   |                  |                  |                        |                     | × .                | S Quick Grid Lines     |        |
|-------------------------------------------|------------------|------------------|------------------------|---------------------|--------------------|------------------------|--------|
| w Model Initialization                    |                  |                  |                        | Project Information |                    | Cartesian Cylindrical  |        |
| <ul> <li>Initialize Model from</li> </ul> | n Saved Settings |                  | $\sim$                 |                     |                    | Coordinate System N    | ame    |
| <ul> <li>Initialize Model from</li> </ul> | an Existing File |                  |                        |                     |                    | GLOBAL                 | une    |
| Initialize Model from                     | Default Settings |                  |                        | Modify/Sha          | ow Information     | OCODAL                 |        |
| Default Units                             |                  | KN, m, C         | ~                      |                     |                    | Number of Grid Lines   |        |
| Default Materi                            | als              | Europe           | ~                      |                     |                    | X direction            | 2      |
| ✓ Save Options as De                      | fault            |                  |                        |                     |                    |                        |        |
| ect Template                              |                  |                  |                        |                     |                    | Y direction            | 2      |
|                                           |                  |                  |                        |                     | 1931               | Z direction            | 2      |
|                                           |                  | <u> </u>         | $\Delta \Delta \Delta$ | <i>₿</i> ₩₽         |                    | Grid Spacing           |        |
| Blank                                     | Gtd Only         | Beam             | 2D Trusses             | 3D Trusses          | 2D Frames          | X direction            | 2,5    |
|                                           |                  |                  |                        |                     |                    | Y direction            | 2,5    |
| <u> </u>                                  |                  | d                |                        |                     | -                  | Z direction            | 2,5    |
| HH111                                     |                  |                  |                        |                     |                    | First Grid Line Locati | on     |
| 3D Frames                                 | Wall             | Flat Slab        | Shells                 | Staircases          | Storage Structures | X direction            | 0,     |
|                                           |                  |                  |                        |                     |                    | Y direction            | 0,     |
|                                           |                  |                  |                        |                     |                    | Z direction            | 0,     |
| Underground                               | Solid Models     | Pipes and Plates |                        |                     |                    | ОК                     | Cancel |

Disegno il modulo di partenza della travatura reticolare spaziale di lato 2,5m.



Vista piano x,y

Vista 3D

Tutti i suoi nodi devono essere delle cerniere interne, ciò richiede che le facce del cubo abbiano un controventamento per evitare che siano labili. Con il comando *Draw Frame/Cable* disegno le aste.



Ripeto il modulo in direzione x per creare la prima fila della reticolare (facendo attenzione a non creare duplicati che andrebbero a falsare l'analisi).



Ripeto il procedimento in direzione y per creare la seconda fila della reticolare.



La travatura è quindi 4x12 con moduli di 2,5m.

A questo punto si può definire la sezione: *Define – Section Properties – Frame Sections* scegliendo il materiale acciaio S355, assegnarla alla travatura: *Assign – Frame – Frame Sections* e selezionare la sezione precedentemente creata.

| S Pipe Section                                             |                                      |                                                 | × | Frame Section Properties                                           |
|------------------------------------------------------------|--------------------------------------|-------------------------------------------------|---|--------------------------------------------------------------------|
| Section Name<br>Section Notes                              | FSEC2<br>Modify/Show Notes           | Display Color                                   | l | PSEC2 BEC2<br>BEC2<br>BEC2<br>BEC2<br>BEC2<br>BEC2<br>BEC2<br>BEC2 |
| Dimensions<br>Outside diameter (13)<br>Wall thickness (1w) | 0,1524<br>6,350E-03                  | Section                                         |   |                                                                    |
| Material + S355                                            | Property Modifiers     Set Modifiers | Section Properties<br>Time Dependent Properties |   |                                                                    |
|                                                            | OK Cancel                            |                                                 |   | <ul> <li></li> </ul>                                               |

Ora imposto la condizione della travatura reticolare di cerniere interne ad ogni nodo, rilasciando i momenti da entrambi i lati (Start, End): *Assign – Frame – Releases/Partial Fixity.* 

| Assign Frame Releases a | nd Partial F | ixity |                 |             |                     | ×        |
|-------------------------|--------------|-------|-----------------|-------------|---------------------|----------|
| rame Releases           |              |       |                 |             |                     |          |
|                         | Rel          | ease  |                 | Frame Part  | tial Fixity Springs |          |
|                         | Start        | End   | Start           |             | End                 |          |
| Axial Load              |              |       |                 |             |                     |          |
| Shear Force 2 (Major)   |              |       |                 |             |                     |          |
| Shear Force 3 (Minor)   |              |       |                 |             |                     |          |
| Torsion                 |              |       |                 |             |                     |          |
| Moment 22 (Minor)       | ✓            | 1     | 0               | kN-m/rad    | 0                   | kN-m/rad |
| Moment 33 (Major)       | ~            | ~     | 0               | kN-m/rad    | 0                   | kN-m/rad |
|                         |              |       |                 |             |                     |          |
|                         |              |       | Clear All Relea | ses in Form |                     |          |
|                         | Г            | OK    | Clor            | Annhy       |                     |          |
|                         | L            | UK    | Cios            | < Apply     |                     |          |
|                         |              |       | VV              | N           |                     |          |
|                         | N            | N     |                 |             |                     |          |
|                         |              | Y     |                 |             |                     |          |
|                         | ×Ν.          |       |                 |             |                     |          |

Seleziono dei punti e vi applico il vincolo della cerniera tramite i comandi: Assign – Joint – Restraints.



Si passa ad assegnare i carichi. Per ogni nodo si considera il peso per la sua area di influenza, quindi per quelli centrali si ha un valore completo e per quelli ai bordi se ne considera la metà. Definisco il caso di carico: *Define – Load Patterns* facendo attenzione a rendere il peso proprio (Self Weight Multiplier) uguale a 0.



Seleziono la parte centrale superiore della travatura: *Assign – Joint Loads – Forces* e assegno il caso di carico appena creato "new", con i rispettivi valori precedentemente trovati (FA,FB,FC) agenti sull'asse z, ai rispettivi nodi.



A questo punto, assegnati vincoli, carichi, rilasci e sezione il modello è completo e si può procedere all'analisi. Prima di avviarla (Run Now) disattivo il DEAD e l'analisi modale MODAL, mandando in analisi soltanto il caso d'interesse "new".

|                        |               |         |            | Click to:               |
|------------------------|---------------|---------|------------|-------------------------|
| Case Name              | Туре          | Status  | Action     | Run/Do Not Run Case     |
| DEAD                   | Linear Static | Not Run | Do not Run |                         |
| MODAL                  | Modal         | Not Run | Do not Run | Show Case               |
| f                      | Linear Static | Not Run | Do Not Run | Delete Deputto for Case |
| 10.00                  |               | Not Kun | run        |                         |
|                        |               |         |            | Run/Do Not Run All      |
|                        |               |         |            | Delete All Results      |
|                        |               |         |            | Show Load Case Tree     |
| nalysis Monitor Option | S             |         |            | Model-Alive             |
| Always Show            |               |         |            | Run Now                 |
|                        |               |         |            |                         |

La struttura deformata:





Ora verifico che il momento e il taglio siano nulli, per avere soddisfatta la condizione della travatura reticolare ed avere solamente sforzo normale. *Show Forces/Stresses – Frames/Cables/Tendons*.



I diversi colori (rosso,blu) del diagramma indicano aste in trazione ed aste in compressione.

Per visualizzare le tabelle: *Display – Show Tables*, scelgo il solo caso di carico "new" con *Select Load Patterns* e spunto *ANALYSIS RESULTS*. Nella tabella che si apre scelgo *Elements Forces/Frames*, valori che saranno utilizzati per il successivo dimensionamento.

| S Ele   | ment Forces - F | rames         |              | _         |        |       |                  |        |            | -    |      | × |
|---------|-----------------|---------------|--------------|-----------|--------|-------|------------------|--------|------------|------|------|---|
| File    | View Edit       | Format-Filter | -Sort Select | Options   |        |       |                  |        |            |      |      |   |
| Units:  | As Noted        |               |              |           |        | E     | ement Forces - I | Frames |            |      |      | ~ |
| Filter: |                 |               |              |           | -      |       |                  | -      |            |      |      |   |
|         | Text            | m             | OutputCase   | Text      | KN     | KN KN | KN               | KN-m   | MZ<br>KN-m | KN-m | Text |   |
| •       | 2               | 0             | new          | LinStatic | 5,037  | 0     | 0                | 0      | 0          | 0    | 2-1  | Τ |
|         | 2               | 1,25          | new          | LinStatic | 5,037  | 0     | 0                | 0      | 0          | 0    | 2-1  | Τ |
|         | 2               | 2,5           | new          | LinStatic | 5,037  | 0     | 0                | 0      | 0          | 0    | 2-1  | Τ |
|         | 3               | 0             | new          | LinStatic | 24,025 | 0     | 0                | 0      | 0          | 0    | 3-1  | Τ |
|         | 3               | 0,5           | new          | LinStatic | 24,025 | 0     | 0                | 0      | 0          | 0    | 3-1  | T |
|         | 3               | 1             | new          | LinStatic | 24,025 | 0     | 0                | 0      | 0          | 0    | 3-1  |   |
|         | 3               | 1,5           | new          | LinStatic | 24,025 | 0     | 0                | 0      | 0          | 0    | 3-1  | T |
|         | 3               | 2             | new          | LinStatic | 24,025 | 0     | 0                | 0      | 0          | 0    | 3-1  | Τ |
|         | 3               | 2,5           | new          | LinStatic | 24,025 | 0     | 0                | 0      | 0          | 0    | 3-1  | Τ |
|         | 4               | 0             | new          | LinStatic | 24,025 | 0     | 0                | 0      | 0          | 0    | 4-1  | T |
|         | 4               | 0,5           | new          | LinStatic | 24,025 | 0     | 0                | 0      | 0          | 0    | 4-1  | T |
|         | 4               | 1             | new          | LinStatic | 24,025 | 0     | 0                | 0      | 0          | 0    | 4-1  | T |
|         | 4               | 1,5           | new          | LinStatic | 24,025 | 0     | 0                | 0      | 0          | 0    | 4-1  | Τ |
|         | 4               | 2             | new          | LinStatic | 24,025 | 0     | 0                | 0      | 0          | 0    | 4-1  | Τ |
|         | 4               | 2,5           | new          | LinStatic | 24,025 | 0     | 0                | 0      | 0          | 0    | 4-1  | ~ |
| <       |                 |               |              |           |        |       |                  |        |            |      |      | > |
| Record  | d: << <         | 1 >           | >>>> of 27   | 739       |        |       |                  |        | Add Tables | s    | Done | 1 |

Procedo all'esportazione della tabella su Excel.

La risultante tabella su Excel deve essere ordinata e ridotta alle informazioni sullo sforzo assiale, i cui valori ottenuti si dividono in negativi per quanto riguarda le aste compresse e positivi per quanto riguarda le aste tese.

|    | А                 | В          | С            | D         | E          | F | G | н | 1 | J | к | L | м | N   | 0 | Р | Q | R | S | т | U | v | w | - |
|----|-------------------|------------|--------------|-----------|------------|---|---|---|---|---|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|
| 1  | TABLE: Ele        | ement Ford | es - Frames  |           |            |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 2  | Frame             | Station    | OutputCase   | CaseType  | Р          |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 3  | 152               | (          | new          | LinStatic | -600,745   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 4  | 232               | 0          | new 🛛        | LinStatic | -598,725   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 5  | 312               | (          | new .        | LinStatic | -596,809   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 6  | 392               | 0          | ) new        | LinStatic | -595,549   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 7  | 472               | (          | new 🛛        | LinStatic | -590,2     |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 8  | 253               | (          | new 🛛        | LinStatic | -583,516   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 9  | 333               | 0          | new 🛛        | LinStatic | -583,148   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 10 | 173               | (          | new 🛛        | LinStatic | -583,1     |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 11 | 413               |            | new 🛛        | LinStatic | -582,275   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 12 | 86                | 0          | new 🛛        | LinStatic | -579,408   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 13 | 7                 | (          | new .        | LinStatic | -578,243   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 14 | 493               | (          | new .        | LinStatic | -573,583   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 15 | 124               | (          | new 🛛        | LinStatic | -275,434   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 16 | 204               | (          | new 🛛        | LinStatic | -273,523   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 17 | 284               | (          | new 🛛        | LinStatic | -272,44    |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 18 | 364               | (          | new 🛛        | LinStatic | -271,479   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 19 | 444               | (          | new 🛛        | LinStatic | -268,81    |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 20 | 524               | (          | new          | LinStatic | -168,244   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 21 | 71                | (          | new          | LinStatic | -145,193   |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 22 | 495               | (          | new 🛛        | LinStatic | -66,923    |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 23 | 8                 | (          | new 🛛        | LinStatic | -64,427    |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 24 | 89                | (          | new 🛛        | LinStatic | -63,668    |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 25 | 473               | (          | new 🛛        | LinStatic | -60,101    |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 26 | 494               | (          | new 🛛        | LinStatic | -59,25     |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 27 | 175               | (          | new          | LinStatic | -58,876    |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 28 | 255               | (          | new          | LinStatic | -57,954    |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   |   |
| 29 | 335               | (          | new          | LinStatic | -57,407    |   |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |   | ¥ |
|    | $( \rightarrow )$ | Element F  | orces - Fram | es Progra | am Control | + |   |   |   |   |   |   |   | E 🔳 |   |   |   |   |   |   |   |   | Þ |   |

Seleziono 4 aste tese e 4 aste compresse.

Per quanto riguarda le aste tese serve la verifica di resistenza. Si trova l'area minima e si crea la relativa tabella Excel. Confronto i dati con quelli del profilario "Oppo" e seleziono delle sezioni adatte.

|   | А     | В                                                      | С    | D                     | E     | F        |  |  |  |  |
|---|-------|--------------------------------------------------------|------|-----------------------|-------|----------|--|--|--|--|
| 1 | (     | Calcolo dell'area minima da sforzo normale di trazione |      |                       |       |          |  |  |  |  |
| 2 |       |                                                        |      |                       |       |          |  |  |  |  |
| 3 | N     | fyk                                                    | γm   | <b>f</b> <sub>d</sub> | A_min | A_design |  |  |  |  |
| 4 | kN    | Mpa                                                    |      | Мра                   | cm2   | cm2      |  |  |  |  |
| 5 |       |                                                        |      |                       |       |          |  |  |  |  |
| 6 | 17,79 | 235,00                                                 | 1,05 | 223,81                | 0,80  | 2,54     |  |  |  |  |
| 7 | 35,40 | 235,00                                                 | 1,05 | 223,81                | 1,58  | 2,54     |  |  |  |  |
| 8 | 53,70 | 235,00                                                 | 1,05 | 223,81                | 2,40  | 2,54     |  |  |  |  |
| 9 | 71,54 | 235,00                                                 | 1,05 | 223,81                | 3,20  | 2,81     |  |  |  |  |

Per quanto riguarda invece le aste in compressione si necessita di verifica di resistenza e di instabilità euleriana. Creo la relativa tabella Excel.

| 08 |                             | - : ×                     | · 🗸 .       | <i>fx</i> =G8* | *H8*100/N8 |                                         |                 |                |                |                   |            |                   |                                 |                                    |                   |
|----|-----------------------------|---------------------------|-------------|----------------|------------|-----------------------------------------|-----------------|----------------|----------------|-------------------|------------|-------------------|---------------------------------|------------------------------------|-------------------|
|    | А                           | В                         | С           | D              | Е          | F                                       | G               | Н              | I.             | J                 | к          | L                 | М                               | N                                  | 0                 |
| 1  | Calcolo dell<br>(resistenza | 'area minin<br>materiale) | na da sforz | o di compre    | essione    | Calcolo                                 | dell'inerzia mi | nima per sforz | o di compressi | ione (instabilità | euleriana) | Ingegnerizza<br>r | zione sezione<br>nembratura pri | e verifica snell<br>ncipale (< 200 | ezza per una<br>) |
| 2  | N                           | fyk                       | Ym0         | fyd            | A_min      | E                                       | beta            | 1              | Lam*           | rho_min           | I_min      | A_design          | I_design                        | rho_min                            | lam               |
| 3  | kN                          | N/mm2                     |             | N/mm2          | cm2        | Mpa                                     |                 | m              |                | cm                | cm4        | cm2               | cm4                             | cm                                 |                   |
| 4  |                             |                           |             |                |            |                                         |                 |                |                |                   |            |                   |                                 |                                    |                   |
| 5  | -145,10                     | 235,00                    | 1,05        | 223,81         | 6,48       | ####################################### | 1,00            | 2,50           | 96,23          | 2,60              | 44         | 6,7               | 45                              | 2,59                               | 96,53             |
| 6  | -275,40                     | 235,00                    | 1,05        | 223,81         | 12,31      | ####################################### | 1,00            | 2,50           | 96,23          | 2,60              | 83         | 12,5              | 192                             | 3,92                               | 63,78             |
| 7  | -573,50                     | 235,00                    | 1,05        | 223,81         | 25,62      | ####################################### | 1,00            | 2,50           | 96,23          | 2,60              | 173        | 25,7              | 856                             | 5,78                               | 43,25             |
| 8  | -600,74                     | 235,00                    | 1,05        | 223,81         | 26,84      | ####################################### | 1,00            | 2,50           | 96,23          | 2,60              | 181        | 27,0              | 1564                            | 7,61                               | 32,85             |

0102

#### 

Profilati metallici Tubi in Acciaio a sezione circolare

Sezione metallica cm<sup>2</sup> Sezione passagg cm<sup>2</sup> Raggi di i Peso kg/m 2,010 2,220 2,420 dxs mm Jx = Jy cm<sup>4</sup> Wx = Wy cm<sup>3</sup> ix = iy cm mm 33,7 x 2,6 33,7 x 2,9 33,7 x 3,2 cm 1,100 1,090 2,540 2,810 3,070 6,380 3,090 1,840 1,990 2,140 6,110 3,360 5,850 3,600 1,080 1,410 1,400 42,4 x 2,6 2,570 10,90 3,250 6,460 3.050 2,840 3,110 42,4 x 2,9 10,50 3,600 7,060 3,330 3,940 7,620 1,390 42.4 x 3.2 10.20 3,590 48,3 x 2,6 2,950 14,60 3,730 9,780 4,050 1,620 10,70 11,60 21,60 48.3 x 2,9 3,270 14,20 4,140 4,430 1,610 48,3 x 3,2 60,3 x 2,9 3,590 4,140 13,80 23,30 4,530 5,230 4,800 7,160 1,600 2,030 4,540 5,070 4,750 5,740 6,410 6,000 60,3 x 3,2 22,80 23,50 7,780 2,020 60,3 x 3,6 76,1 x 2,6 22,10 39,50 25,90 40,60 8,580 10,70 2,010 2,600 76,1 x 2,9 76,1 x 3,2 76,1 x 3,6 5,280 5,800 6,490 6,670 7,330 38.80 44,70 11.80 2,590 38,20 48,80 12,80 2,580 8,200 7,050 8,620 37,30 14,20 2,570 54,00 88,9 x 2,6 88,9 x 3,2 5,570 6,810 65,70 79,20 14,80 17,80 55.00 3,050 53,50 3,030 88,9 x 3,6 7,630 52,40 9,650 87,90 19,80 3,020 88,9 x 4,0 114,3 x 3,6 8,430 9,900 51,40 90,10 10,70 12,50 96,30 192,0 21,70 33,60 3,000 3,920 13,90 15,50 12,50 114,3 x 4,0 11,00 12,10 88,70 211,0 36,90 3,900 87,10 141,0 41,00 41,80 3,890 4,840 114,3 x 4,5 234,0 139,7 x 2,9 292,0 9,860 139,7 x 3,6 139,7 x 4,0 12,20 13,50 138,0 136,0 15,40 17,10 357,0 393,0 51,10 56,20 4,810 4,800 139,7 x 4,5 14,90 437,0 62,60 134,0 19,10 4,780 168,3 x 3,2 168,3 x 4,0 13,10 16,30 16,60 20,60 206.0 566.0 67.20 5 840 697,0 202,0 82,80 5,810 168,3 x 4,5 18,10 199,0 23,20 777,0 92,40 5,790 168,3 x 5,0 219,1 x 4,0 20,10 21,40 25,70 27,00 856,0 1.564 5,780 7,610 197,0 102,0 143,0 350,0 219,1 x 5,0 219,1 x 5,9 26,40 31,00 33,60 39,50 7,570 7,540 343.0 1.928 176,0 338,0 2.247 205,0 273,0 x 4,0 26,70 552,0 33,80 3.058 224,0 9,510 26,70 36,80 41,60 47,00 52,80 9,460 9,430 273.0 x 5.6 538.0 4.206 308.0 273,0 x 6,3 533,0 4.696 344,0 31,80 46,20 55,60 323.9 x 4.0 784,0 40.20 5.144 318,0 11,30 323,9 x 5,9 323,9 x 7,1 58,90 70,70 7.453 8.869 460,0 548,0 11,20 11,20 765,0 753,0 43,20 54,50 55,10 69,10 12,40 12,40 355.6 x 5.0 938.0 8.464 476.0 355,6 x 6,3 924,0 10.547 593,0 68,30 49,50 62,40 355,6 x 8,0 906,0 87,40 13.201 742,0 12,30 406,4 x 5,0 406,4 x 6,3 1.234 1.218 63,10 79,20 625,0 780,0 14,20 14,10 12.704 15.849 70,10 62,10 70,30 89,10 79,50 89,20 14,10 16,00 15,90 406.4 x 7.1 1.208 17.756 874.0 457,2 x 5,6 457,2 x 6,3 1.562 1.552 20.312 22.684 889,0 992,0 457,2 x 8,0 88,20 1.529 113,0 28.484 1.246 15,90

A questo punto devo tornare su SAP assegnando un caso ai frame di un profilato medio scelto tra quelli analizzati, tesi e compressi. Stavolta, però, l'obiettivo è quello di ricavare il peso proprio della struttura. Quindi il Pattern da scegliere è DEAD. Ora conosco le reazioni vincolari e il peso della struttura.

|    | А          | В             | С         | D      | E      | F      |
|----|------------|---------------|-----------|--------|--------|--------|
| 1  | TABLE: Joi | int Reactions |           |        |        |        |
| 2  | Joint      | OutputCase    | CaseType  | F1     | F2     | F3     |
| 3  | Text       | Text          | Text      | KN     | KN     | KN     |
| 4  | 8          | DEAD          | LinStatic | -6,104 | 0,289  | 32,582 |
| 5  | 33         | DEAD          | LinStatic | -1,209 | 0,28   | 17,581 |
| 6  | 38         | DEAD          | LinStatic | 8,659  | -2,851 | 26,977 |
| 7  | 48         | DEAD          | LinStatic | -0,735 | -0,477 | 19,908 |
| 8  | 56         | DEAD          | LinStatic | -7,168 | 2,281  | 30,259 |
| 9  | 60         | DEAD          | LinStatic | 9,025  | -1,825 | 28,803 |
| 10 | 68         | DEAD          | LinStatic | -1,156 | -0,357 | 19,965 |
| 11 | 76         | DEAD          | LinStatic | -7,531 | 2,176  | 29,738 |
| 12 | 80         | DEAD          | LinStatic | 9,131  | -1,907 | 29,405 |
| 13 | 88         | DEAD          | LinStatic | -1,357 | -0,339 | 19,982 |
| 14 | 96         | DEAD          | LinStatic | -7,702 | 1,915  | 29,388 |
| 15 | 100        | DEAD          | LinStatic | 9,169  | -1,874 | 29,697 |
| 16 | 108        | DEAD          | LinStatic | -1,53  | -0,3   | 19,981 |
| 17 | 116        | DEAD          | LinStatic | -7,956 | 1,313  | 28,729 |
| 18 | 120        | DEAD          | LinStatic | 9,222  | -1,609 | 30,213 |
| 19 | 128        | DEAD          | LinStatic | -1,986 | 0,246  | 20,054 |
| 20 | 136        | DEAD          | LinStatic | -9,187 | 1,94   | 27,446 |
| 21 | 140        | DEAD          | LinStatic | 9,468  | 1,893  | 33,048 |
| 22 | 148        | DEAD          | LinStatic | -1,052 | -0,795 | 16,767 |

PP = 936,077 KN

Con il peso proprio della struttura si può ricavare come esso si distribuisce sui nodi, con una costante β. Quindi:

 $\beta$  = Peso Proprio : Area Piano > 936,077:300 = 3,12 KN/m<sup>2</sup>

Ora definisco un carico che rappresenti allo stesso tempo il peso proprio della struttura e quello da me assegnato: *Define – Load Combinations – Add New Combo*.



## Rilancio l'analisi



Procedo ad esportare una nuova tabella su Excel che mostri la

## VERIFICA AGLI ABBASSAMENTI

| v1 | \_< 1/200 luce

|     | А          | В          | С           | D         | E        | F         |
|-----|------------|------------|-------------|-----------|----------|-----------|
| 1   | TABLE: Joi |            |             |           |          |           |
| 2   | Joint      | OutputCase | CaseType    | U1        | U2       | U3        |
| 3   | 55         | COMB1      | Combination | 0,000599  | 0,000669 | -0,00168  |
| 105 | 145        | COMB1      | Combination | 0,000384  | 0,000511 | -0,000569 |
| 106 | 149        | COMB1      | Combination | 0,000531  | 0,000504 | -0,00056  |
| 107 | 138        | COMB1      | Combination | -0,000023 | 0,000025 | -0,000545 |
| 108 | 137        | COMB1      | Combination | 0,00057   | 0,00045  | -0,000538 |
| 109 | 147        | COMB1      | Combination | 0,000413  | 0,000319 | -0,000487 |
| 110 | 146        | COMB1      | Combination | 0,000138  | 0,000049 | -0,000481 |
| 111 | 32         | COMB1      | Combination | 0,000333  | 0,000564 | -0,000416 |
| 112 | 10         | COMB1      | Combination | 0,000376  | 0,000594 | -0,000395 |
| 113 | 9          | COMB1      | Combination | 0,000095  | 0,000193 | -0,000392 |

Faccio una Verifica allo Stato Limite di Esercizio, e con essa riavvio l'analisi.