
Esercitazione 2 _ Centro delle rigidezze e ripartizione delle forze sismiche

L'esercitazione ha l'obiettivo di calcolare come viene ripartita una forza orizzontale, ad esempio quella sismica o la forza del vento, sui diversi telai che compongono una struttura, applicando il metodo delle rigidezze.

Prendiamo in riferimento una struttura di un edificio con pianta ad L e solaio rigido nel suo unico piano, composta da telai in cemento armato del tipo SHEAR-TYPE.

Come si può vedere la struttura esaminata è composta da 7 telai, 4 verticali (paralleli ad y) e 3 orizzontali (paralleli ad x) con pilastri di sezione 40x40cm:

-Telaio 1v composto da: Pilastri 1 e 5

-Telaio 2v composto da: Pilastri 2 e 6

-Telaio 3v composto da: Pilastri 3, 7 e 9

-Telaio 4v composto da: Pilastri 4, 8 e 10

-Telaio 1o composto da: Pilastri 1, 2, 3 e 4

-Telaio 2o composto da: Pilastri 5, 6, 7 e 8

-Telaio 3o composto da: Pilastri 9 e 10

I controventi, che per il solaio rappresentano vincoli cedevoli elasticamente, possono essere schematizzati come molle nel piano dell'impalcato, aventi un'adeguata rigidezza.

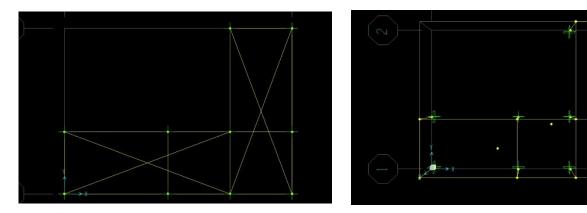
Tramite il foglio excel calcoliamo la rigidezza traslante associata a tutti i controventi: essendo modellati come telai SHEAR-TYPE, la loro rigidezza di ricava tramite la formula:

$$F = (\frac{12EI_1}{h^3} + \frac{12EI_2}{h^3})\delta$$

$$k = \frac{12 \, EI_1}{h^3} + \frac{12 \, EI_2}{h^3}$$

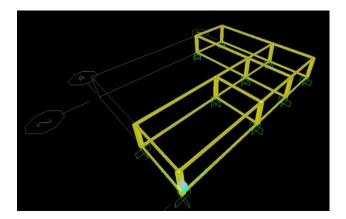
Il primo passo è quello di calcolare le rigidezze dei controventi dell'edificio che dipendono dal modulo di Young, dall'altezza del pilastro e momento d'inerzia.

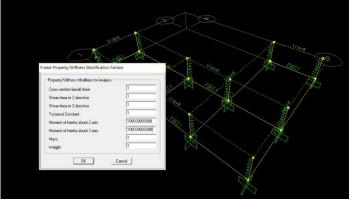
$$I_x = \frac{bh^3}{12} = 2133333,30 \ cm^4$$


$$I_y = \frac{b^3h}{12} = 213333,30 \ cm^4$$

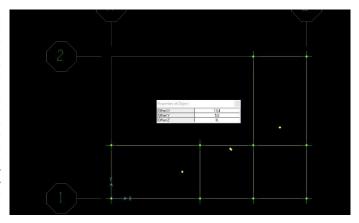
А	В	C	D	E	F	G	
		Step 1: calcolo delle	e rigidezze traslant	i dei controve	nti dell'edifi	cio	
Telaio 1v	1-5	pilastri che individuano il telaio		Telaio 1o	1-2-3-4	pilastri che individuano il telaio	
E (N/mmq)	25000,00	modulo di Young		E	25000,00	modulo di Young	35
H (m)	3,00	altezza dei pilastri		Н	3,00	altezza dei pilastri	
I_1 (cm^4)	213333,30	momento d'inerzia pilastro 1		1_1	213333,30	momento d'inerzia pilastro 1	
12	213333.30	momento d'inerzia pilastro 2		12	213333,30	momento d'inerzia pilastro 2	
13	0.00	momento d'inerzia pilastro 3		1 3	213333.30	momento d'inerzia pilastro 3	
14	0.00	momento d'inerzia pilastro 4		1.4	213333.30	momento d'inerzia pilastro 4	
K_T (KN/m)	47407,40	rigidezza traslante telaio 1		K_T		rigidezza traslante telaio 5	
Telaio 2v	2-6	pilastri che individuano il telaio		Telaio 2o	5-6-7-8	pilastri che individuano il telaio	
	25000.00			E E	25000.00	modulo di Young	
E H	3.00	modulo di Young		H	3.00		
11	213333.30	altezza dei pilastri momento d'inerzia pilastro 1		11		altezza dei pilastri momento d'inerzia pilastro 1	
							-
1_2	213333,30	momento d'inerzia pilastro 2		1_2		momento d'inerzia pilastro 2	
1_3	0,00	momento d'inerzia pilastro 3		1_3		momento d'inerzia pilastro 3	
1_4	0,00	momento d'inerzia pilastro 4		1_4		momento d'inerzia pilastro 4	
K_T	47407,40	rigidezza traslante telaio 2		K_T	94814,80	rigidezza traslante telaio 6	72.0
Telaio 3v	3-7-9	pilastri che individuano il telaio		Telaio 3o	9-10	pilastri che individuano il telaio	- 19
E	25000,00	modulo di Young		E	25000,00	modulo di Young	- 55
Н	3.00	altezza dei pilastri		Н	3.00	altezza dei pilastri	
11	20000.00	momento d'inerzia pilastro 1		1.1		momento d'inerzia pilastro 1	
12	45000,00	momento d'inerzia pilastro 2		12		momento d'inerzia pilastro 2	3
13	45000,00	momento d'inerzia pilastro 3		1 3	0,00	momento d'inerzia pilastro 3	
14	0,00	momento d'inerzia pilastro 4		14	0,00	momento d'inerzia pilastro 4	
ΚT	12222,22	rigidezza traslante telaio 3		ΚT	47407,40	rigidezza traslante telaio 7	
							100
Telaio 4v	4-8-10	pilastri che individuano il telaio					
E	25000,00	modulo di Young					
Н	3,00	altezza dei pilastri					
I_1	213333,30	momento d'inerzia pilastro 1					
1_2	213333,30	momento d'inerzia pilastro 2					
1_3	213333,30	momento d'inerzia pilastro 3					
1_4	0,00	momento d'inerzia pilastro 4					
KT	71111,10	rigidezza traslante telaio 4					

Nello STEP 2 abbiamo una tabella riassuntiva, in cui vengono riportate le rigidezze di tutti i controventi, orizzontali e verticali, calcolate nel primo step.


22				
40 41		Step 2: ta	bella sinottica controventi e distanze	
42				
43	Kv1(KN/m)	47407,40	rigidezza traslante contr.vert.1	
44	Kv2	47407,40	rigidezza traslante contr.vert.2	
45	Kv3	71111,10	rigidezza traslante contr.vert.3	
46	Kv4	71111,10	rigidezza traslante contr.vert.4	
47	dv2 (m)	10,00	distanza orizzontale controvento dal punto O	
48	dv3	16,00	distanza orizzontale controvento dal punto O	
49	dv4	22,00	distanza orizzontale controvento dal punto O	
50	Ko1(KN/m)	94814,80	rigidezza traslante contr.orizz.1	
51	Ko2	94814,80	rigidezza traslante contr.orizz.2	
52	Ko3	47407,40	rigidezza traslante contr.orizz.3	
53	do2	6,00	distanza verticale controvento punto O	
54	do3	16,00	distanza verticale controvento punto O	
55				


Per trovare il centro di massa dell'impalcato, riconduciamo la forma "complessa" a due rettangoli e troviamo le coordinate del centro di massa applicando le seguenti formule:

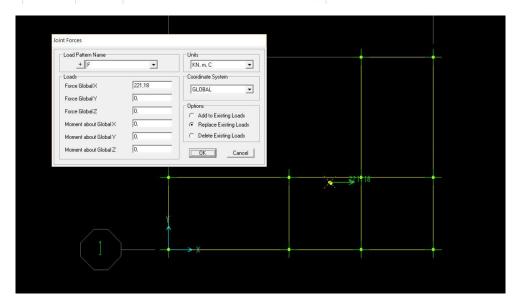
Il centro di rigidezza C non coinciderà con il centro di massa G, dunque lo calcoliamo tramite tabella excel.


Ancoriamo la struttura a terra attraverso i vincoli "incastro" e assegno alle travi una sezione di 70x40cm e, essendo un telaio *SHEAR-TYPE*, aumentiamo la rigidezza delle travi in maniera esponenziale, in quanto nel modello è ipotizzata come fittizia.

Nello STEP 4 si calcolano: rigidezza totale orizzontale, somma delle rigidezze dei singoli controventi orizzontali, la rigidezza totale verticale, somma delle rigidezze dei singoli controventi verticali, le coordinate del centro delle rigidezze dell'impalcato e la rigidezza torsionale totale.

Step 4	4: calcolo del	centro di rigidezze e delle rigidezze globali
Ko_tot	237037,00	rigidezza totale orizzontale
Kv tot	237037,00	rigidezza totale verticale
X_C (m)	13,40	coordinata X centro rigidezze
Y_C	5,60	coordinata Y centro rigidezze
dd_v1	-13,40	distanze controvento dal centro rigidezze
dd_v2	-3,40	distanze controvento dal centro rigidezze
dd_v3	2,60	distanze controvento dal centro rigidezze
dd_v4	8,60	distanze controvento dal centro rigidezze
dd_o1	-5,60	distanze controvento dal centro rigidezze
dd_o2	0,40	distanze controvento dal centro rigidezze
dd_o3	10,40	distanze controvento dal centro rigidezze
φ (KN*m)	22916737,16	rigidezza torsionale totale

Notiamo che il centro delle rigidezze risulta molto vicino al centro delle masse, fattore positivo per la progettazione dei controventi, in quanto la loro distanza influenza il comportamento della struttura sotto l'azione del carico sismico: la forza viene considerata applicata al centro di massa G, dunque la sua vicinanza al centro delle rigidezze C presuppone un braccio molto ridotto.


Per eseguire l'analisi dei carichi sismici, dobbiamo conoscere la stratigrafia del nostro solaio per calcolare i carichi permanenti, accidentali e strutturali.

Step 5: analisi dei carichi sismici			
q_s (KN/mq)	3,42	carico permanente di natura strutturale	
q_p	7,50	sovraccarico permanente	
q_a	2,00	sovraccarico accidentale	
G (KN)	2096,64	carico totale permamente	
Q (KN)	384,00	carico totale accidentale	
Ψ	0,30	coefficiente di contemporaneità	
W (KN)	2211,84	Pesi sismici	
С	0,10	coefficiente di intensità sismica	
F (KN)	221,18	Forza sismica orizzontale	

Lo STEP 6-7 sono i passaggi finali e portano a determinare la ripartizione della forza sismica sui controventi e gli effetti cinematici sull'impalcato, in termini di traslazione e di rotazione rigida.

M (KN*M)	22,12	momento torcente
v_o (KN)	0,001	traslazione verticale
φ	0,00000	rotazione impalcato
Fv1 (KN)	43,62	Forza sul controvento verticale 1
Fv2	44,08	Forza sul controvento verticale 2
Fv3	66,53	Forza sul controvento verticale 3
Fv4	66,95	Forza sul controvento verticale 4
Fo1	-0,51	Forza sul controvento orizzontale 1
Fo2	0,04	Forza sul controvento orizzontale 2
Fo3	0,48	Forza sul controvento orizzontale 3
	221,18	
		44,24
		44,24
		66,36
		66,36

	этер о	: ripartizione forza sismica lungo X
M (KN*m)	22,12	momento torcente (positivo se antiorario)
u_o (m)	0,001	traslazione orizzontale
9	0,00000	rotazione impalcato (positiva se antioraria)
Fv1 (KN)	-0,61	Forza sul controvento verticale 1
Fv2	-0,16	Forza sul controvento verticale 2
Fv3	0,18	Forza sul controvento verticale 3
Fv4	0,59	Forza sul controvento verticale 4
Fo1	87,96	Forza sul controvento orizzontale 1
Fo2	88,51	Forza sul controvento orizzontale 2
Fo3	44,71	Forza sul controvento orizzontale 3
	221,18	
		88,47
		88,47
		44,24

