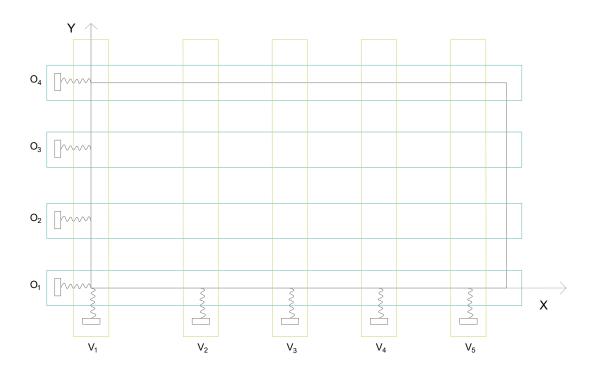

RIPARTIZIONE DI FORZE ORIZZONTALI AGENTI SU UNA STRUTTURA IN CLS

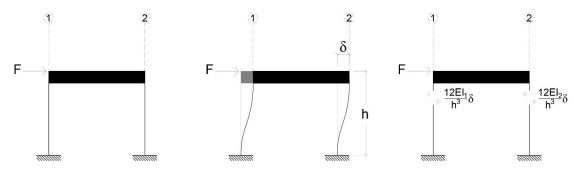
Per questa esercitazione è stato considerato un edificio in cls armato, precedentemente dimensionato e modellato su SAP, come un insieme di telai "shear type" con le relative rigidezze traslanti. Essendo un telaio di elementi verticali e orizzontali tra loro collegati da nodi rigidi, questi potranno avere doppia funzione se disposti adeguatamente; resistere al peso della costruzione e di resistere alle forze orizzontali, in questo caso si è considerata l'azione sismica. Per la ripartizione delle forze orizzontali è stato necessario applicare un diaphragm ad ogni piano, cioè un vincolo interno, che colleghi le teste dei pilastri ad un unico corpo rigido piano, l'impalcato. In questo modo si impone a tutti i punti del piano di ruotare attorno all'asse Z nel centro delle rigidezze C, e di non inflettersi fuori dal piano.

L'edificio è definito dal seguente impalcato:



I solai sono orditi come indicato in figura ed i pilastri hanno le seguenti sezioni con diversi momenti d'inerzia e conseguenti rigidezze:

• CALCOLO DELLE RIGIDEZZE DEI CONTROVENTI


Nella figura si possono individuare nove telai, cinque paralleli all'asse Y e quattro paralleli all'asse X :

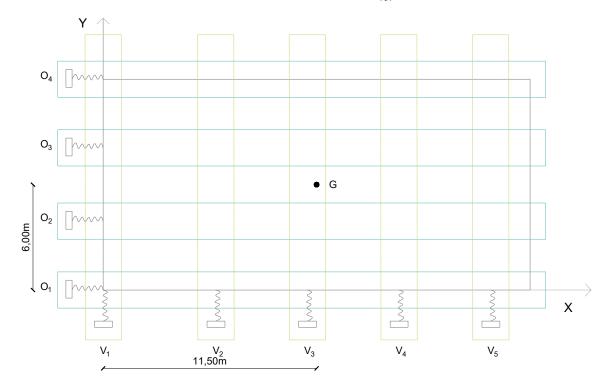
Il solaio è ipotizzabile rigido nel suo piano, mentre i controventi sono cedevoli elasticamente e rappresentabili come molle. Nelle tabelle del foglio excel inseriamo il valore dei momenti d'inerzia per calcolare la rigidezza traslante con cui ogni telaio si oppone alle forze orizzontali.

$$k = \frac{12E}{h^3} \sum_{i} I_{i}$$

Rigidezza traslante del telaio shear type composto da n pilastri

Forze di taglio nei pilastri reagenti alla F ripartita dall'impalcato

	Step 1: calcolo delle rigidezze traslanti dei controventi dell'edificio											
Unità	Telaio v1	3-1-27-75	pilastri che individuano il telaio	Unità	Telaio o1	3-5-22-23-25	pilastri che individuano il telaio					
N/mma)	E	32308	modulo di Young	(N/mmg)	E	32308	modulo di Young					
(m)	H	3.50	altezza dei pilastri	(m)	H	3.50	altezza dei pilastri					
(cm^4)	1.3	312500.00	momento d'inerzia pilastro 3	(cm^4)	1.3	312500	momento d'inerzia pilastro 3					
(cm^4)	i 1	312500.00	momento d'inerzia pilastro 1	(cm^4)	1.5	112500	momento d'inerzia pilastro 5					
(cm^4)	1 27	312500,00	momento d'inerzia pilastro 27	(cm^4)	1 22	112500	momento d'inerzia pilastro 22					
(cm^4)	1 75	312500,00	momento d'inerzia pilastro 75	(cm^4)	I 23	112500	momento d'inerzia pilastro 23					
(0 1)		012000,00	momento a morbia pilada o ro	(6111 1)	1 25	312500	momento d'inerzia pilastro 25					
KN/m	Kv1	113030,90	rigidezza traslante telaio 1	KN/m	Ko1	58776,07	rigidezza traslante telaio 6					
Unità	Telaio v2	5-8-31-79	pilastri che individuano il telaio	Unità	Telaio o2	1-8-21-24-26	pilastri che individuano il telaio					
V/mma)	E	32308	modulo di Young	(N/mmg)	E	32308	modulo di Young					
(m)	H	3.50	altezza dei pilastri	(m)	H	3.50	altezza dei pilastri					
(m/4)	1.5	112500.00	momento d'inerzia pilastro 5	(cm^4)	11	312500	momento d'inerzia pilastro 1					
(cm^4)	1.8	112500,00	momento d'inerzia pilastro 8	(cm^4)	1.8	112500	momento d'inerzia pilastro 8					
(cm^4)	I_31	112500,00	momento d'inerzia pilastro 31	(cm^4)	I_21	112500	momento d'inerzia pilastro 21					
(cm^4)	I_79	112500,00	momento d'inerzia pilastro 79	(cm^4)	1_24	112500	momento d'inerzia pilastro 24					
143.17	16.0	1000110		1011	1_26	312500	momento d'inerzia pilastro 26					
KN/m	Kv2	40691,13	rigidezza traslante telaio 2	KN/m	Ko2	58776,07	rigidezza traslante telaio 7					
Unità	Telaio v3	22-21-54-88	pilastri che individuano il telaio	Unità	Telaio o3	27-31-54-41-42	pilastri che individuano il telaio					
I/mmq)	E	32308	modulo di Young	(N/mmq)	E	32308	modulo di Young					
(m)	Н	3,50	altezza dei pilastri	(m)	Н	3,50	altezza dei pilastri					
(cm^4)	I_22	112500,00	momento d'inerzia pilastro 22	(cm^4)	I_27	312500,00	momento d'inerzia pilastro 27					
(cm^4)	I_21	112500,00	momento d'inerzia pilastro 21	(cm^4)	I_31	112500,00	momento d'inerzia pilastro 31					
(cm^4)	I_54	112500,00	momento d'inerzia pilastro 24	(cm^4)	I_54	112500,00	momento d'inerzia pilastro 54					
(cm^4)	1_88	112500,00	momento d'inerzia pilastro 88	(cm^4)	I_41	112500,00	momento d'inerzia pilastro 41					
					I_42	312500,00	momento d'inerzia pilastro 42					
KN/m	Kv3	40691,13	rigidezza traslante telaio 3	KN/m	Ko3	58776,07	rigidezza traslante telaio 8					
Unità	Telaio v4	23-24-41-89	pilastri che individuano il telaio	Unità	Telaio o4	75-79-88-89-90	pilastri che individuano il telaio					
l/mmq)	E	32308	modulo di Young	(N/mmg)	E	32308	modulo di Young					
(m)	H	3.50	altezza dei pilastri	(m)	Н	3,50	altezza dei pilastri					
cm^4)	I 23	112500,00	momento d'inerzia pilastro 23	(cm^4)	I 75	312500,00	momento d'inerzia pilastro 75					
cm^4)	1 24	112500,00	momento d'inerzia pilastro 24	(cm^4)	I 79	112500,00	momento d'inerzia pilastro 79					
cm^4)	I 41	112500.00	momento d'inerzia pilastro 41	(cm^4)	I 88	112500.00	momento d'inerzia pilastro 88					
cm^4)	1 89	112500,00	momento d'inerzia pilastro 89	(cm^4)	1 89	112500,00	momento d'inerzia pilastro 89					
					I 90	312500,00	momento d'inerzia pilastro 90					
KN/m	Kv4	40691,13	rigidezza traslante telaio 4	KN/m	Ko4	58776,07	rigidezza traslante telaio 9					
Unità	Telaio v5	25-26-42-90	pilastri che individuano il telaio									
		32308										
J/mma\	F		modulo di Young									
V/mmq)	E H		modulo di Young									
(m)	Н	3,50	altezza dei pilastri									
(m) (cm^4)	H I_25	3,50 312500,00	altezza dei pilastri momento d'inerzia pilastro 25									
(m) (cm^4) (cm^4)	H I_25 I_26	3,50 312500,00 312500,00	altezza dei pilastri momento d'inerzia pilastro 25 momento d'inerzia pilastro 26									
	H I_25	3,50 312500,00	altezza dei pilastri momento d'inerzia pilastro 25									


• CALCOLO DEL CENTRO DI MASSA

Nel caso di un impalcato rigido con densità di massa uniforme su tutto l'impalcato il centro di massa coincide con il centro d'area. Calcoliamo il centro di massa dell'impalcato in quanto sarà il punto di applicazione della forza sismica.

Step 3: calcolo del centro di massa											
area_1 (mq)	276,00	misura dell'area superficie 1area 1 (misura)									
x_G1 (m)	11,50	coordinata X centro area 1									
y_G1 (m)	6,00	coordinata Y centro area 1									
/	0,00										
/	0,00										
/	0,00										
Area tot (mq)	276,00	Area totale impalcato									
X_G (m)	11,50	coordinata X centro d'area impalcato (centro massa)									
Y_G (m)	6,00	coordinata Y centro d'area impalcato (centro massa)									

$$X_{G} = \frac{A \cdot X_{G1}}{A_{tot}}$$

$$Y_G = A \cdot y_{G1} \over A_{tot}$$

• CALCOLO DEL CENTRO DELLE RIGIDEZZE

Trovate le rigidezze traslanti dei controventi verticali e orizzontali, si inseriscono nella tabella sinottica con le relative distanze dal centro di rotazione O. Il calcolo del centro delle rigidezze dipende dalle rigidezze globali dei controventi verticali $K_{v, tot}$ e orizzontali $K_{o, tot}$ e dalle distanze rispetto ad O.

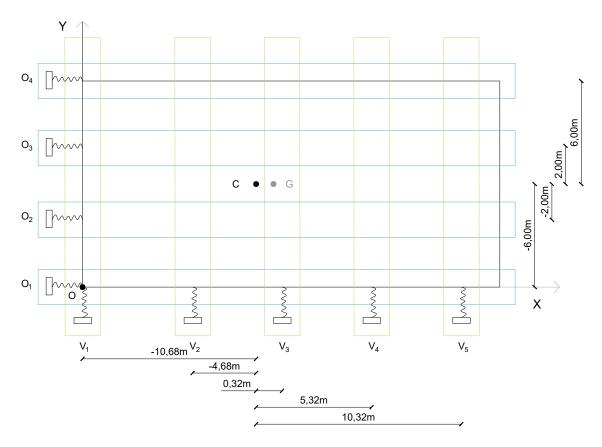
		Step 2: tabella sinottica controventi e distanze												
Unità														
kN/m	Kv1	113030,90	rigidezza traslante contr.verticale											
kN/m	Kv2	40691,13	rigidezza traslante contr.verticale											
kN/m	Kv3	40691,13	rigidezza traslante contr.verticale											
kN/m	Kv4	40691,13	rigidezza traslante contr.verticale											
kN/m	Kv5	113030,90	rigidezza traslante contr.verticale											
m	xv2	6,00	distanza orizzontale controvento dal punto O											
m	xv3	11,00	distanza orizzontale controvento dal punto O											
m	xv4	16,00	distanza orizzontale controvento dal punto O											
m	xv5	21,00	distanza orizzontale controvento dal punto O											
kN/m	Ko1	58776,07	rigidezza traslante contr.orizzontale											
kN/m	Ko2	58776,07	rigidezza traslante contr.orizzontale											
kN/m	Ko3	58776,07	rigidezza traslante contr.orizzontale											
kN/m	Ko4	58776,07	rigidezza traslante contr.orizzontale											
m	yo2	4,00	distanza verticale controvento punto O											
m	yo3	8,00	distanza verticale controvento punto O											
m	yo4	12,00	distanza verticale controvento punto O											

Sten 4: calcolo d	lel centro di rigidezza	e delle rigidezze globali
otep +. calcolo t	iei cellilo di ligidezze	e delle rigidezze giobali

Ko_tot	235104,28	rigidezza totale orizzontale
Kv_tot	348135,18	rigidezza totale verticale
X_C	10,68	coordinata X centro rigidezze
Y C	6.00	coordinata Y centro rigidezze (=Y G)

$$X_{\text{C}} = \frac{\sum k_{\text{i, v}} \cdot d_{\text{i, v}}}{\sum k_{\text{v, tot}}}$$

$$Y_{C} = \frac{\sum k_{i, o} \cdot d_{i, o}}{\sum k_{o, tot}}$$



Il centro delle rigidezze C non coincide con il centro di massa G ma risultano avere stessa ordinata Y; quest'operazione ci consente di verificare se l'impalcato subisce una rotazione o sola traslazione. Considerando C come il centro di rotazione di tutti i punti dell'impalcato rigido attorno all'asse Z, la forza sismica F esterna applicata a G lungo Y, NON passa per il centro delle rigidezze e quindi avrà luogo una rotazione e una traslazione verticale. La forza sismica F applicata lungo X, PASSA per il centro e quindi ci sarà sola traslazione orizzontale.

• CALCOLO DELLA RIGIDEZZA TORSIONALE

Oltre a calcolare le coordinate del centro di rigidezza, ricaviamo anche il valore della rigidezza torsionale, calcolando tutte le distanze dei diversi controventi dal nuovo centro di rotazione C per trovare la rigidezza torsionale e in seguito calcolare la rotazione dell'impalcato.

dd_v1	-10,68	distanze controvento dal centro rigidezze
dd_v2	-4,68	distanze controvento dal centro rigidezze
dd_v3	0,32	distanze controvento dal centro rigidezze
dd_v4	5,32	distanze controvento dal centro rigidezze
dd_v5	10,32	distanze controvento dal centro rigidezze
dd_o1	-6,00	distanze controvento dal centro rigidezze
dd_o2	-2,00	distanze controvento dal centro rigidezze
dd_o3	2,00	distanze controvento dal centro rigidezze
dd_o4	6,00	distanze controvento dal centro rigidezze
K_φ (KN*m)	17514862,41	rigidezza torsionale totale

$$k_{phi} = \sum k_{i, v} \cdot dd^2_{i, v} + \sum k_{i, o} \cdot dd^2_{i, o}$$

CALCOLO DEI CARICHI ORIZZONTALI

Per la ripartizione delle forze orizzontali, manca ora solo il carico orizzontale, essendo questo ipotizzabile come una forza sismica, si ricava tale carico dalla formula:

$$F_s = W_{edificio} \cdot c$$

Vengono inseriti nella tabella i valori dei carichi che definiscono il tipo di solaio e calcoliamo la forza peso dell'edificio, uguale alla massa dell'edificio per l'accelerazione.

Insieme all'utilizzo dei coefficienti di contemporaneità e di intensità sisimica si ricava la forza sismica orizzontale da applicare sul centro di massa.

$$\mathbf{W}_{edificio} = \mathbf{P} = \mathbf{Mg}$$
 (Forza Peso dell'edificio in KN)

$$P = Q_s + Q_p + 0.8 \cdot Q_A$$
 (0.8 corrisponde al valore del coefficiente di contemporaneità)

$$\mathbf{Q}_{s} = \mathbf{n}_{piani} \cdot \mathbf{A}_{tot} \cdot \mathbf{q}_{s}$$

$$Q_p = n_{piani} \cdot A_{tot} \cdot q_p$$

$$Q_{a} = n_{piani} \cdot A_{tot} \cdot q_{a}$$

Introduciamo un coefficiente di intesità sismica **c** per tenere conto della sismicità del luogo di progettazione dell'edificio.

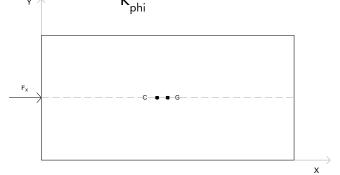
	Step 5: analisi dei carichi sismici										
q s (KN/mq)	3,50	carico permanente di natura strutturale									
q_0 (rat/mq)	3,00	sovraccarico permanente									
q_a	2,00	sovraccarico accidentale									
Qp (KN)	5382,00	carico totale permamente									
Qa (KN)	1656,00	carico totale accidentale									
ψ	0,80	coefficiente di contemporaneità									
W (KN)	6706,80	Pesi sismici									
С	0,10	coefficiente di intensità sismica									
F(KN)	670,68	Forza sismica orizzontale									

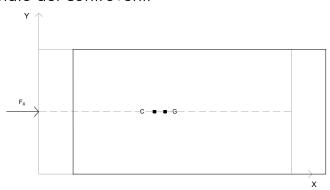
$$F_s = W_{edificio} \cdot c = 670,68 \text{ KN}$$

• RIPARTIZIONE DELLE FORZE ORIZZONTALI

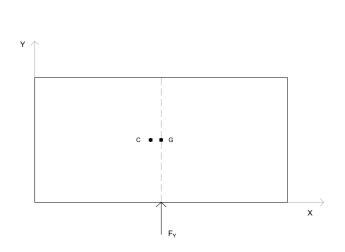
Si dovrà ora quantificare la ripartizione della forza sismica F_s sui controventi con le relative reazioni elastiche, e gli effetti cinematici sull'impalcato in termini di traslazione e di rotazione rigida:

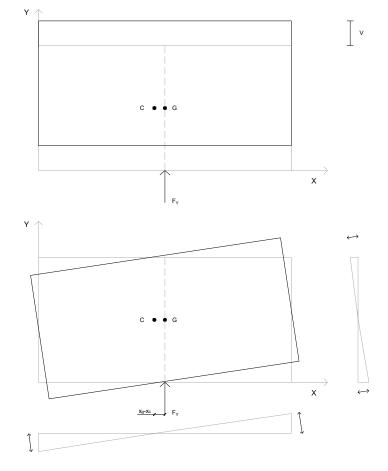
$$delta_v = \frac{F_s}{\sum k_{i,v}}$$


Traslazione verticale dei controventi


$$delta_o = \frac{F_s}{\sum k_{i,o}}$$

Traslazione orizzontale dei controventi


$$phi = \frac{M_{torcente}}{k_{phi}}$$


Traslazione rotazionale dei controventi

Traslazione orizzontale dell'impalcato dovuta a F_x

Traslazione verticale e rotazione dell'impalcato dovuta a F_y

Step 6: ripartizione forza sismica lungo X

-									
M (KN*m)	0,00	momento torcente (NULLO perché braccio=0)							
u_o (m)	0,003	traslazione orizzontale							
φ	0,00000	rotazione impalcato (NULLO)							
Rv1 (KN)	0,00	Reazione elastica controvento verticale 1							
Rv2	0,00	Reazione elastica controvento verticale 2							
Rv3	0,00	Reazione elastica controvento verticale 3							
Rv4	0,00	Reazione elastica controvento verticale 4							
Rv5	0,00	Reazione elastica controvento verticale 5							
Ro1	167,67	Reazione elastica controvento orizzontale 1							
Ro2	167,67	Reazione elastica controvento orizzontale 2							
Ro3	167,67	Reazione elastica controvento orizzontale 3							
Ro4	167,67	Reazione elastica controvento orizzontale 4							
Ri	670,68	Forza ripartita lungo X controventi orizzontali							
		167,67							
		167,67							
		167,67							
		167,67							
		670,68							
	Sten 7: rinartizione forza sismica lungo Y								

Step 7: ripartizione forza sismica lungo Y

M (KN*M)	553,09	momento torcente						
v_o (KN)	0,002	traslazione verticale						
φ	0,00003	rotazione impalcato						
Rv1	179,65	Reazione elastica controvento verticale 1						
Rv2	72,38	Reazione elastica controvento verticale 2						
Rv3	78,81	Reazione elastica controvento verticale 3						
Rv4	85,23	Reazione elastica controvento verticale 4						
Rv5	254,61	Reazione elastica controvento verticale 5						
Ro1	-11,14	Reazione elastica controvento orizzontale 1						
Ro2	-3,71	Reazione elastica controvento orizzontale 2						
Ro3	3,71	Reazione elastica controvento orizzontale 3						
Ro4	11,14	Reazione elastica controvento orizzontale 4						
Ri	670,68	Forza ripartita lungo Y controventi verticali						
		217,75						
		78,39						
		78,39						
		78,39						
		217,75						
		670,68						

Quando la forza è parallela all'asse X, le reazioni elastiche dei controventi verticali e orizzontali sono uguali a :

$$R_{i,v} = k_{i,v} (delta_v \cdot dd_{i,v}) = k_{i,v} (delta_v \cdot 0) = 0$$

$$R_{i,o} = k_{i,o} (delta_o + phi \cdot dd_{i,o}) = k_{i,o} \cdot delta_o$$

Quando la forza è parallela all'asse Y, le reazioni elastiche dei controventi verticali e orizzontali sono uguali a :

$$R_{i,v} = k_{i,v} (delta_v + phi \cdot dd_{i,v})$$

$$R_{i,o} = k_{i,o} (phi \cdot dd_{i,v})$$

La forza ripartita lungo X, controbilanciata dalle reazioni dei controventi orizzontali, è uguale alla traslazione orizzontale per la rigidezza traslante del controvento e non genera rotazione perché l'asse passa per il centro delle rigidezze dove si annulla il Momento Torcente avendo braccio nullo.

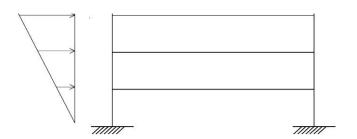
La forza ripartita lungo Y, controbilanciata dalle reazioni dei controventi verticali, genera una traslazione verticale e una rotazione attorno al centro delle rigidezza.

$$F_x = k_o \cdot delta_o$$

$$F_v = k_v \cdot delta_v$$

• ASSEGNAZIONE CARICHI VERTICALI E ORIZZONTALI

$$F_{i} = F_{s} \cdot h_{i}$$

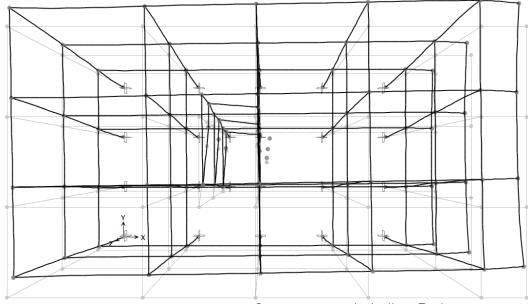

$$\sum h_{i}$$

Fi corrisponde al valore della forza sismica da applicare nel centro di massa di ciascun piano. Fi risulta direttamente proporzionale alla quota, gli ultimi piani subiscnono maggiormente l'azione sismica, ed è per questo che la distribuzione della forza sismica ha un andamento triangolare.

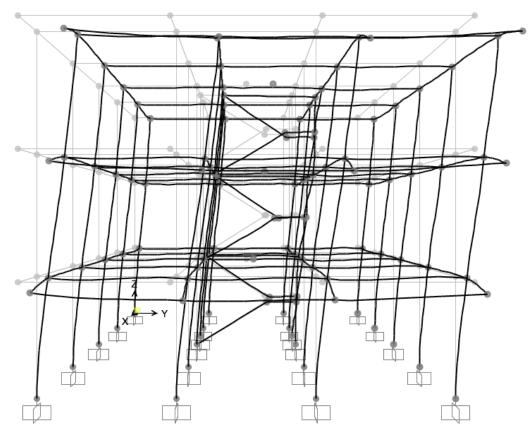
$$F_1 = F_S \cdot \frac{h_1}{h_1 + 2h_1 + 3h_1} = 111,78 \text{ KN}$$

$$F_2 = F_S \cdot \frac{2h_1}{h_1 + 2h_1 + 3h_1} = 223,56 \text{ KN}$$

$$F_3 = F_s \cdot \frac{3h_1}{h_1 + 2h_1 + 3h_1} = 335,34 \text{ KN}$$


VERIFICA A PRESSOFLESSIONE DEI PILASTRI

Dopo aver mandato l'analisi con il carico SLU e la forza sismica F lungo Y, ricaviamo le nuove sollecitazioni di progetto che verranno inserite nella tabella excel ai fini della verifica a pressoflessione dei pilastri.


	Pressoflessione in casi di piccola eccentricità: e=M/N <= h/6												VERIFICA	
	f _{ck}	f _{cd}	b	h	Α	lx	Wx	N	Mx	e h/6	sigma_N	sigma_M	sigma_max	sigma _{max} < f _{cd}
ANGOLARI_TERRA														
3	28	15,9	30	50	1500	312500	12500	460,34	-23,1054	-5,02 8,33	3,07	-1,85	1,22	VERIFICATA
25	28	15,9	30	50	1500	312500	12500	750,57	-4,8273	-0,64 8,33	5,00	-0,39	4,62	VERIFICATA
75 90	28 28	15,9 15.9	30	50 50	1500 1500	312500 312500	12500 12500	527,27 844,06	-28,9727 -14,9071	-5,49 8,33 -1,77 8,33	3,52 5,63	-2,32 -1,19	1,20 4,43	VERIFICATA VERIFICATA
CENTRALI TERRA	20	15,9	30	50	1500	312300	12300	044,00	-14,5071	-1,11 0,33	3,03	-1,19	4,43	VERIFICATA
8	28	15.9	50	30	1500	112500	7500	829,02	-49,1113	-5,92 5,00	5,53	-6,55	-1 02	VERIFICATA
21	28	15.9	50	30	1500	112500	7500	511,29	13,2116	2,58 5,00	3,41	1,76	5,17	VERIFICATA
24	28	15,9	50	30	1500	112500	7500	832,62	-13,9464	-1,68 5,00	5,55	-1,86	3,69	VERIFICATA
31	28	15,9	50	30	1500	112500	7500	925,23	-33,301	-3,60 5,00	6,17	-4,44	1,73	VERIFICATA
41	28	15,9	50	30	1500	112500	7500	839,82	-10,9546	-1,30 5,00	5,60	-1,46	4,14	VERIFICATA
54	28	15,9	50	30	1500	112500	7500	1032,72	17,8204	1,73 5,00	6,88	2,38	9,26	VERIFICATA
PERIMETRALI_TERRA	28	15.9	30	50	1500	312500	12500	691,98	-31,5817	-4,56 8,33	4,61	-2,53	2.09	VERIFICATA
5	28	15.9	50	30	1500	112500	7500	830.15	-29,5351	-3,56 5,00	5,53	-3,94	1.60	VERIFICATA
22	28	15,9	50	30	1500	112500	7500	681,69	13,6719	2,01 5,00	4,54	1,82	6.37	VERIFICATA
23	28	15,9	50	30	1500	112500	7500	664,73	16,4059	2,47 5,00	4,43	2,19	6,62	VERIFICATA
26	28	15,9	30	50	1500	312500	12500	1088,10	-19,9181	-1,83 8,33	7,25	-1,59	5,66	VERIFICATA
27	28	15,9	30	50	1500	312500	12500	682,39	-32,897	-4,82 8,33	4,55	-2,63	1,92	VERIFICATA
42	28	15,9	30	50	1500	312500	12500	1092,35	-21,4063	-1,96 8,33	7,28	-1,71	5,57	VERIFICATA
79 88	28 28	15,9 15.9	50 50	30 30	1500 1500	112500 112500	7500 7500	890,89 754,93	-13,8873 7,01	-1,56 5,00 0,93 5,00	5,94 5,03	-1,85 0.93	4,09 5.97	VERIFICATA VERIFICATA
89	28	15,9	50	30	1500	112500	7500	754,93	-2,5426	-0,35 5,00	4,83	-0,34	5,97 4.49	VERIFICATA
ANGOLARI PRIMO	-20	10,0		30	1300	112000	7000	724,14	2,0420	0,00 0,00	4,00	0,01	1,10	VEIGITIOATA
173	28	15.9	30	40	1200	160000	8000	502,97	-3,2382	-0,64 6,67	4,19	-0,40	3,79	VERIFICATA
206	28	15,9	30	40	1200	160000	8000	554,71	15,8807	2,86 6,67	4,62	1,99	6,61	VERIFICATA
151	28	15,9	30	40	1200	160000	8000	306,37	-26,0856	-8,51 6,67	2,55	-3,26	-0,71	VERIFICATA
191	28	15,9	30	40	1200	160000	8000	342,67	-34,1782	-9,97 6,67	2,86	-4,27	-1,42	VERIFICATA
CENTRALI_PRIMO 60	28	15.9	40	30	1200	90000	6000	693,34	13,0758	1,89 5,00	5,78	2,18	7 96	VERIFICATA
169	28	15.9	40	30	1200	90000	6000	379,82	9,3279	2,46 5,00	3.17	1,55	4.72	VERIFICATA
172	28	15.9	40	30	1200	90000	6000	551,37	-17,4843	-3,17 5,00	4,59	-2,91	1.68	VERIFICATA
189	28	15,9	40	30	1200	90000	6000	556,25	-16,3739	-2,94 5,00	4,64	-2,73	1,91	VERIFICATA
156	28	15,9	40	30	1200	90000	6000	542,65	-53,6055	-9,88 5,00	4,52	-8,93	-4,41	VERIFICATA
179 PERIMETRALI PRIMO	28	15,9	40	30	1200	90000	6000	610,21	-35,9185	-5,89 5,00	5,09	-5,99	-0,90	VERIFICATA
PERIMETRALI_PRIMO	28	15.9	30	40	1200	160000	8000	459.48	-37,1355	-8,08 6,67	3.83	-4.64	-0.81	VERIFICATA
153	28	15.9	40	30	1200	90000	6000	554.64	-32,4781	-5,86 5,00	4,62	-5,41	-0.79	VERIFICATA
170	28	15.9	40	30	1200	90000	6000	452,60	-14,8893	-3,29 5,00	3,77	-2,48	1,29	VERIFICATA
171	28	15,9	40	30	1200	90000	6000	440,44	-19,8376	-4,50 5,00	3,67	-3,31	0,36	VERIFICATA
174	28	15,9	30	40	1200	160000	8000	723,96	-22,5664	-3,12 6,67	6,03	-2,82	3,21	VERIFICATA
195	28	15,9	40	30	1200	90000	6000	588,69	-16,0939	-2,73 5,00	4,91	-2,68	2,22	VERIFICATA
204	28	15,9	40	30	1200	90000	6000	498,10	1,5004 4,9047	0,30 5,00	4,15	0,25	4,40	VERIFICATA
205 175	28 28	15,9 15,9	40 30	30 40	1200 1200	90000 160000	8000	476,32 451,59	4,9047 -38,6852	1,03 5,00 -8,57 6,67	3,97 3,76	0,82 -4,84	4,79 -1,07	VERIFICATA VERIFICATA
ANGOLARI SECONDO	20	15,9	30	40	1200	100000	8000	401,08	-30,0032	-0,01 0,01	3,10	-4,04	-1,07	VEINIFICATA
231	28	15,9	30	30	900	67500	4500	254,30	5,7058	2,24 5,00	2,83	1,27	4.09	VERIFICATA
209	28	15,9	30	30	900	67500	4500	152,47	5,8796	3,86 5,00	1,69	1,31	3,00	VERIFICATA
CENTRALI_SECONDO														
66	28	15,9	30	30	900	67500	4500	320,92	-5,4097	-1,69 5,00	3,57	-1,20	2,36	VERIFICATA
227 230	28	15,9 15.9	30	30	900	67500 67500	4500 4500	220,00 272,91	4,1811 -13,5233	1,90 5,00 -4,96 5,00	2,44 3,03	0,93 -3,01	3,37 0.03	VERIFICATA VERIFICATA
230 247	28 28	15,9	30 30	30 30	900	67500	4500 4500	272,91	-13,5233 -12,9333	-4,96 5,00 -4,66 5,00	3,03	-3,01	0,03	VERIFICATA
214	28	15,9	30	30	900	67500	4500	277,94	-12,9353	-12,50 5,00	3,09	-7,72	-4.63	VERIFICATA
237	28	15,9	30	30	900	67500	4500	308,91	-24,9988	-8,09 5,00	3,43	-5,56	-2,12	VERIFICATA
PERIMETRALI_SECONDO														
211	28	15,9	30	30	900	67500	4500	282,29	-21,9346	-7,77 5,00	3,14	-4,87	-1,74	VERIFICATA
228	28	15,9	30	30	900	67500	4500	225,68	10,2544	4,54 5,00	2,51	2,28	4,79	VERIFICATA
229 262	28	15,9 15.9	30	30	900	67500 67500	4500 4500	219,57	-14,2604 2.4486	-6,49 5,00 1,01 5,00	2,44	-3,17 0,54	-0,73 3.24	VERIFICATA VERIFICATA
262	28 28	15,9	30	30	900	67500	4500	242,80 232,54	-6,3095	-2,71 5,00	2,70	-1,40	1,18	VERIFICATA
207	28	15.9	30	30	900	67500	4500	227.21	-9,4912	-4.18 5.00	2,56	-1,40	0.42	VERIFICATA
253	28	15,9	30	30	900	67500	4500	293,48	-13,4572	-4,59 5,00	3,26	-2,99	0,27	VERIFICATA

		Pressoflessione in casi di moderata eccentricità: h/6 < e=M/N < h/2													VERIFICA
	f _{ck}	f_{ck} f_{cd} b h A lx Wx N Mx e $h/6$ $h/2$ u $sigma_max$											sigma _{max} < f _{cd}		
PERIMETRALI_PRIMO															
190	28	15,9	30	40	1200	160000	8000	736,75	50,2438	6,82	6,67	20,00	13,18	12,42	VERIFICATA
ANGOLARI_SECONDO															
264	28	15,9	30	30	900	67500	4500	269,58	30,9992	11,50	5,00	15,00	3,50	17,11	NON VERIFICATO
249	28	15,9	30	30	900	67500	4500	163,24	22,6896	13,90	5,00	15,00	1,10	32,97	NON VERIFICATO
PERIMETRALI_SECONDO															
232	28	15,9	30	30	900	67500	4500	361,27	25,2443	6,99	5,00	15,00	8,01	10,02	VERIFICATA
248	28	15,9	30	30	900	67500	4500	353,80	26,9665	7,62	5,00	15,00	7,38	10,66	VERIFICATA
233	28	15,9	30	30	900	67500	4500	222,77	14,1013	6,33	5,00	15,00	8,67	5,71	VERIFICATA

Dalla verifica risultano non verificate le sezioni 30 x 30 cm di due pilastri angolati dell'ultimo piano che ricevono maggiore flessione. Andando a cambiare le dimensioni della sezione con 40 x 40 cm la verifica risulta soddisfatta.

Sovrapposizione degli effetti: Traslazione orizzotale e rotazione

Sovrapposizione degli effetti: Traslazione orizzontale e rotazione