Laboratorio di Progettazione Strutturale 1M – Prof. Ginevra Salerno

Esercitazione 2: Dimensionamento struttura a telaio in C.A.

Studenti: Patryk Rynkowski, Luca Santilli

Iniziamo con il disegno su Autocad della pianta del solaio del caso di progetto, con le seguenti dimensioni: 24m lungo l'asse x, 12m lungo l'asse y, 3,5m lungo l'asse z (altezza interpiano), con 3 piani totali. Il corpo scala misura 4mx2,4m, con un'alzata di 17,5cm, una pedata di 28cm e il pianerottolo 1,2mx2,4m. Lo sbalzo lungo l'asse x misura 2m.

Pianta:

Prospetto:

Sezione corpo scala:

Ora raggruppiamo le **aree d'influenza Ai** dei pilastri e le calcoliamo.

Passiamo su SAP2000 e procediamo al ridisegno della struttura.

A questo punto iniziamo con il **pre-dimensionamento della trave principale**, scegliendo innanzitutto il materiale da SAP C28/35.

Dal foglio Excel abbiamo modificato l'interasse e la luce e Fck (28). Mettendo come base b 30cm, come altezza h 55cm, la sezione è verificata.

\$	alvataggio a	utomatico 💽	⊇ 🖪 '	9	e.			5	sercitazione_)	havi_7_11_201	4als - Mode	ilità compe	stibilită -	Excel		a.		Lu	a Saetilli	6	- a :	×
Fil	e Hom	e Inserisci	Layout	di pagina	Formule	Dati R	evisione V	isualizza	Guida	,O Cerca	1									₫ Con	dividi 📗 🖓 Comment	ti
		Arial G C S ·	- 10 - 1 - 1	- A⁻ A⁻ ◊ - <u>A</u> -	≍ =)} ≣ (∰ 3	0 0	송 Tecto a c 텔 Unisci e a	apo silinea al cent	na - 85	- % 000	- 	ormattazio ondizionak	ne Forma 1 * tab	tta come S ella * ce	ili Inse Ra *	risci Elimin	Formato	∑ * ŽV ⊡ * ŽV de * titra*	D Trouit i selezioni	Ritero	at new a	
13	oporte da	1949 ×	V fr	28			011001(10102)			The second second	a					0410				10.2.911	areasa, T	-
	A	В	c	D	F	F	G	н	1	3	к	1	М	N	0	р	0	R	S	Т	11	1.
1	interasse (r	n) q. (KN/m ²)	q. (KN/m ²	q. (KN/m2)	q, (KN/m)	luce (m)	Mean (KN*m)	frx (N/mm ²)	fya (N/mm ²	Tec (N/mm ²)	feat (N/mim ²	B	r	b (cm)	h, (cm)	5 (cm)	H _{mm} (cm)	н	HA	area (m²)	peso unitario (KN/m)	
2																						1
3	4,00	3,50	3,00	2,00	48,20	5,00	150,63	450,00	391,30	28,00	15,87	0,38	2,46	30,00	43,76	5.00	48,76	00,00	0,10	0,17	4,13	
5	10.00	3.42	2.56	2.00	112.80	8.00	902.88	450.00	301.30	50.00	28.33	0.52	2,40	30.00	70.27	5.00	75,97	52.00	0.07	0:16	3.90	۴.
6	10,00	5,42	2,00	2,00	117.93	8.00	943 44	450.00	391.30	50.00	28.33	0.52	2.16	30.00	71.83	5.00	76.83	non venticato	0,01	4,14	3,00	
1	10.00	2.00	2.00	3.00	101.00	8.00	00.005	450.00	391 30	60.00	34.00	0.57	2.09	20.00	71.95	5.00	76.95	80.00	0.10	0.16	4.00	1
8		- aller	- allere	- Alara	105.20	8.00	849.60	450.00	391.30	60.00	34.00	0.57	2.09	20.00	13.77	5.00	78 77	venticate	-		100	11
9					0.00	0100	0.00															
10		-			0.00	-	0.00		-		-	-			1		-	-				1
11		-			0.00		0.00					-										1
12		-			0.00		0.00	-				-										11
13					0,00		0.00			-					1				-			1
14					0,00		0,00															1
15					0,00		0.00								4			1				
16					0,00		0.00								1		1		_			
17					0,00		0,00															
18					0,00	-	0,00				-	-			1		-	10.000		-		
19					0,00		0,00															
20				1	0,00		0,00									1		2		_		41
21		-		1	0,00		0,00				-				4	-	1	N 5	_		-	4
22					0,00		0,00								-							4
23		-		-	0,00		0,00	-					-									
24				+	0,00		0.00		-			-				-	<u> </u>					-
20		-		-	0,00	2	0.00				-	-			1		-			-	-	4
07					0.00		0.00					-			-					-		-
28				-	0.00	-	0.00	-			-	-		-	-			7	-	-		1
29					0.00	2	0.00							1	-			1				1
30					0,00		0,00								-							1
31																						-
-	19 I.J.	egno accia	io ds ar	mato	÷									1 (4)								i i
Free	10																	8		四 -	+ 1	02%

Su SAP, aggiungiamo una nuova sezione chiamata **TRAVE PRINCIPALE** (rosso), con il materiale scelto C28/35 e gli riportiamo le dimensioni ottenute dal foglio Excel (h0,55 b0,3).

Section Name	TRAVE PRINCIPALE	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Depth (t3)	0,55	2
Width (t2)	0,3	•••
		3
		Properties
Material	Property Modifiers	Section Properties
+ C28/35	∽ Set Modifiers	Time Dependent Properties

Tornando al foglio Excel passiamo alla seconda trave, modificando l'interasse e la luce e Fck(28). Scegliendo come base b25 cm, come altezza h 35cm, la sezione risulta verificata.

- 35	Salvataggio au	tomatico 🧿		7 · (¥.			e	ercitazion	e_travi_7_11_20	14.xis - Mo	delità comp	atībilitā -	Entel		-		- 10	ca Santilli	6	0 - 0	×
F	ile Home	e Inserisci	Layout d	li pagina	Formule	Dati R	evisione V	isualizza	Guida	,P Cerca)									년 Con	dividi 🛛 🖓 Com	menti
E	٦×	Arlai	~ 10	~ A^ A"	= = -	= 🕅 -	👫 Testo a c	apo		Vumero						H		Σ: AP	Q		3 ³	
trie	colia UE	GCS	- 田 - 1	A - A -	三面日		🛄 Unisci e i	allinea al cent		en - %	-18 -18	Formattazi	me Form	atta come	Still 1	iserisci Elimir	a Formato	Ordina	e Trova e	f	recentrale	
	Annuali E		Constant			1.1	Decamanta		10	Raman		contactorial	01	actia - C	- 60	Cale	1 22	- CHURA	Deleziona Rea	Bian	ale ma	1
1	-ppunit in		Corporte			1				The out I			- 37			A COM		1100	1.00	(and)		
N	5	3.0	√ ⊅	=N5																		~
. 4	A	8	C	D	E	F	G	н	1	J	к	L	M	14	0	P	Q	R	s	T	U	
1	interasse (m	1) Q. (KN/m ²	0 _p (KN/m [*])	q, (KN/m²)	q _x (KN/m)	luce (m)	M _{rax} (KN*m)	t _{yk} (N/mm*)	f _{yd} (N/m/	n^2) f_{ck} (N/mm ²) f _{cc} (N/mm	n²) β	r	b (cm)	h, (cm) δ (cm)	H _{inn} (cm)	н	нл	area (m²)	peso unitario (K)	√m)
3	4.00	3.50	3.00	2.00	48.20	5.00	150.63	450.00	391.30	28.00	15.87	0.38	2.45	30.00	43.76	5.00	48.76	55.00	0.10	0.17	4.13	
4	C. Q. S.			to jete	53,56	5,00	167.38	450,00	391,30	28,00	15,87	0,38	2,46	30,00	46,13	5,00	51,13	verificata		0.00		
5	1,00	3,50	3,00	2,00	12,05	4,00	24,10	450,00	391,30	28,00	15,87	0,38	2,46	25,00	19,17	5,00	24,17	35,00	0,09	0,09	2,19	
6	_				14.89	4.00	29.79	450.00	391.30	28.00	15.87	0.38	2.48	25.00	21.32	5.00	26 32	verificata		1.000		_
7	10,00	2,00	2,00	3,00	101,00	8,00	808,00	450,00	391,30	00,00	34,00	0,57	2,09	20,00	71,95	5,00	76,95	80,00	0,10	0,16	4,00	_
8	<u> </u>				106,20	8,00	849,60	450,00	391,30	60.00	34,00	0.57	2.09	20,00	73,77	5.00	78,77	verificata				
.9	-		-		0,00		0,00				-	8	-				-			-		
10			-		0,00		0,00		_	_	-				-		-					
11	-		-		0,00		0,00			-	-	-	-		-		1					_
12				-	0.00		0.00				-	-	-		-	-	-					
1.3					0,00		0,00						-		-		-					
14					0,00		0,00					-	-		-	-						-
10	-	-	-		0.00		0.00			-	-	-	-		-	-	-		-	-		
17	-				0,00		0.00						-							-	-	-
18	-	-			0,00		0.00		-	-		-	-		-		-			-		
19			3 7		0.00		0.00													-		-
20			12		0.00		0.00				1											_
21					0.00		0,00															
22			0		0,00		0,00															-
23					0,00		0,00															
24			2	J	0,00		0,00		1			1	-		1		4					
25	13		8		0,00		0,00		1									10	1			
26					0,00		0,00															
27			2		0,00		0,00		1		1						1					
28		-	3		0,00	1	0,00				-	-	1		1		1		1			
29					0,00		0,00															
30	-																					
31	1		the local sector		~									1.1.1								+
	l le	igno acca	titi cis ari	nato (Ð									1 4								
IVO	into												-			_		-	田田	巴 -		+ 100%

Su SAP, definiamo una nuova sezione chiamata **TRAVE SECONDARIA** (arancione), con il materiale scelto C28/35 e gli riportiamo le dimensioni ottenute dal foglio excel (h0,35 b0,25).

Section Name	TRAVE SECONDARIA	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Depth (t3)	0,35	2
Width (t2)	0,25	
		3
		Properties
Material	Property Modifiers	Section Properties
+ C28/35	✓ Set Modifiers	Time Dependent Properties
Con	crete Reinforcement	

Passiamo al dimensionamento delle mensole tramite il foglio Excel, qui modifichiamo i valori base b 30cm e altezza h 50cm, così la sezione risulta verificata.

Salvatagg	io automati	ico 💽	89	* (÷-	÷				esercito	uzione me	rsole_delo	mabilità.xl	s - Modali	tă compati	ibilită - En	æl				3-1	Luca Santilli	6	m -	- 5	×
File H	lome In	serisci	Layout di	pagina	Formule	Dati	Revision	e Visu	alizza G	uida	,₽ Cer	ca										id C	ondividi	Con	menti
Incolla	G (c <u>s</u> -	- 10 () - ()	- A' A'		* * = =	* (\$1 20	esto a capo Inisci e allir	en al centro	N - R	kumero ≣ + % o	a 18 19	Forma	ttazione R onale ~	tabelia ~	e Still cella *	itserisci	Elimina For	mato	Σ · Ar Z I · Z Ordin	P ,C hale Tiova h* selezion) e 80 2 *	arratetza		
Appusti	Fi.	Car	attere		5		Aliceame	nto .		15	Name	ri	6		91			Cele		14	odfice	8	servalezza		0
R.3		X 1	fi	50												-									×
1 4.(157:14)	0_00Ving)	0.000mgb	4.(i0\/m)	luce (m)	N _{ma} (dil'm)	H ("(Nimm")	(Leoleani)	t, dimm")	t, Nimm ¹)	0	1	b (cm)	h, icmi	ð (cm)	H _{ine} (cm)	H (can)	arna (m ¹)	1 9050 (M4m)	a.	E (Writer?)	W 1, (079°)	A Vea(cm)	P. Dirac	6	~ -
3 3.50	3,00	200	48.29 53.08	2,00	96.40 105.15	450 450.00	391,30 391,30	28 28,09	15,97 15,87	0,38	2.45 2.45	30.00	35.01 35,73	5.00	40.01 41,73	50 Venticata	Ü,15	3,75	33,75	21000	312500	0,10	1344,44	3	
0 7 7	2,00	2.00	45.25 55,35	5 5,00	578.13 E91.88	450 450.00	391,30 391,30	40 40.00	22,57 22,57	0.46	2.25	40 40.00	50.97 52.33	5.00	61,97 67,33	70 verificata	0,25	7,00	34,50	21000	1143333	117	445.40	S	
9 2.50 10	2,09	2,00	46,25 54,21	5 6,00	\$32,50 \$75,83	450,00	301,30 301,30	55 55.00	21,17 31,17	0,54 0,54	212 212	35 35.00	58,53 03,37	5,00	63,53 68,37	70 verificata	0,25	8,13	33,63	21000	1060417	2,59	231,41	No	
11日、「「「「「」」」、「「」」、「「」」、「「」」、「」」、「」」、「」」、「」	legno	accialo	cls arm	ato	•										1										•
Pronto			Chemical Providela		196																曲面	巴	- 1		+ 70%

Definiamo una nuova sezione su SAP chiamata **MENSOLA**(verde) dello stesso materiale C28/35 ma con altezza h 50cm e base b 30cm, così da foglio Excel.

Section Name	MENSOLA	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Depth (13)	0,5	<u> </u>
Width (12)	0,3	
		3
		• • • •
		Properties
Material	Property Modifiers	Section Properties
+ C28/35	✓ Set Modifiers	Time Dependent Properties
Concre	te Reinforcement	

Ora dobbiamo definire il peso delle travi principali e secondarie che poggiano sul pilastro. Su SAP utilizziamo i comandi: DEFINE-SECTION PROPERTIES-SHOW MATERIALS, da lì vediamo il peso per unità di volume (25).

Sul foglio excel, nel peso della trave principale facciamo l'operazione =25*0,3*0,55 e otteniamo il peso in kN/m 4,13. Ripetiamo l'operazione per la trave secondaria e otteniamo il peso in kN/m 2,19. Copiamo la fila per il numero dei piani (3). Aggiungiamo il modulo elastico E alla tabella (32308 Mpa).

Abbiamo definito la sezione dei tre pilastri dei vari piani:

- (PT=40cmx40cm)
- (P1=35cmx35cm)
- (P2=30cmx30cm)

Su SAP, definiamo i vari pilastri.

Textury dar Textica			x E hecangalar Section			at 🚺 Bertangalar Sectors		×
Section Barrie	PLASTRO FT Madity/Chove tasks.	Davay Solor	Section Kerne Section Votes	Individual Individual	Display Color 📕	Section Ramp Exciton Norma	Buddyddraw fatter	Desey Color
Depth (12) Hells (12)	0.4 (0.4		Oterenans Daph (D) ware (D)	0.35		Destrection Death (103) Alastin (103)	[43 [43	
Nord () Cam	Property Matthews	Properties. Gestion Properties. They Dependent Properties.	Norma (*) (2005	+spery Bullies	Tree Dependent Properties	Natera Child	Property Southers.	Properties Sectory Perpeters. The Dependent Properties.
Simi	ele Kashoueeen.		Concerns A	lexificaneset.	e	Concrete	Resturcement.	

Definiamo travi principali centrali(TP_C), principali perimetrali (TP_P), secondarie (TS).

Group Definition		X Group Definition		X S Group Definition	ذ
Group Name	(IP_d	Group Name		Group Name	
Group Uses		Group Uses		Group Uses	
Selection	StaticNL Structure Stage	Selection	StaticfiL Structure Stage	Selection	🔄 Statichi, Structure Stage
Section Cut Definition	🖸 Bridge Response Output	Section Cut Definition	Bridge Response Output	Section Cut Definition	Bridge Response Output
Steel Frame Design Group	Auto Salamic Porce Output	Steel Frame Design Group	Auto Selamic Force Output	Steel Frame Design Group	Auto Seismic Force Output
Concrete Frame Design Group	Auto Wind Force Output	Concrete Frame Design Group	Auto Wind Force Output	Concrete Frame Design Group	Auto Wind Force Output
Cold Formed Design Group	Mass and Weight Output	Cold Formed Design Group	Mess and Weight Output	Cold Formed Design Group	Mass and Weight Output
Check/	Uncheck All	Check/	Incheck All	Check	Uncheck A8
	Display Color		Dapiay Color		Display Color
OK	Cancel	OK	Cancel	OK	Cancel

Ora definiamo i pilastri: pilastri piano terra angolari(PL_PT_A), pilastri piano terra perimetrali (PL_PT_P), pilastri piano terra centrali (PL_PT_C).

Group Name	PL. 97.4	Group Name	PLPT_F	Group Name	25276
Top Uses Section Section Cut Definition Steel Frame Design Group Concrets Frame Design Group Autommo Design Group Cost Frame	StaticHL, Structure Stage Bridge Response Dutput Auto Selamic Force Output Auto Wind Force Output States and Weight Output	Croup Uses Selection Section Cut Definition Steel Frame Design Group Concrete Frame Design Group Aummund Design Group Coto Formed Design Group	Staticiti, Structure Stage Stridge Response Output Auto Seamo Force Output Auto Wed Porce Output Maas and Weight Output	Oreup Uses Selection Selection Cut Definition Steal Frame Design Group Concrete Frame Design Group Anamum Design Group Cole Formed Design Group	
Check	/Uncheck All	Chec	Müncheck All	Check	/Uncheck All
ОК	Display Color	СК	Display Color	CK	Display Color
			N 33 • 1111114.44 40	· T · M · ·	
X-Y Fine @ 2=15	• •	• • •	x 3-0 View		
X + Fine © 7:13	8 6	 • •	× x 3-D View		
X-Y Piece © 2-13			× 3-0 View		

Aggiungiamo nuove sezioni per il corpo scala: cordolo (SCALA_CORDOLO: cyano), ginocchio (SCALA_GINOCCHIO: rosa antico), montanti (SCALA_MONTANTI: rosso vino).

Section Name Section Notes	SCALA_CORDOLD	Display Color	Section Name Section Notes	SCALA_GINOCCHID Modify/Show Notes	Display Color
Denenalons Depth (13) Width (12)	0.3	Section	Dimensions Depth (13) Width (12)	0,45	Sector
/atorial + C28/35	Property Modifiers	Section Properties	Material + C26/35	Property Modifiers	Section Properties
ectangular Section	CK Cancel	×		OK Cancel]
ectangular Section	CK Cancel	X		OK Cancel]
ectangular Section Section Name	CK Cancel SCALA_MONTANTI Modity/Shew Notes	Display Color		OK Cancel]
Section Name Section Notes Intensions Depth (12) Writh (12)	CK Cencel SCALA_MONTANTI Modify/Shew Notes 0,3 0,3 0,3	Display Color		OK Cancel	
ectangular Section Section Name Section Notes Depth (13) Writh (12)	CK Cancel SCALA_MONTANTI Modify(Show Notas 0.3 0.3 0.3	Display Color Section Image: Color Image: Color <		CK Cancel	
ectangular Section Section Name Section Notes Depth (13) Writh (12) Alterial + C28/35 Conc	CK Cencel SCALA_MONTANTI Modify/Shew Notes 0,3 0,3 0,3 Property Modifiers Set Modifiers crete Reinforcement	Display Color Section Upper test Section Properties Time Dependent Properties		CK Cancel	

Disegniamo dalla vista 3d il **corpo scale**, e creiamo un unico gruppo che contenga tutti gli altri (SCALE: viola). Assegniamo le sezioni alle travi principali, secondarie, mensole e pilastri. Separiamo la trave principale nel punto di congiunzione con il cordolo della scala.

Tramite il comando SET DISPLAY OPTIONS scegliamo di visualizzare i gruppi finora creati.

Ora tramite il comando DIVIDE SELECTED FRAMES interrompiamo la trave nel punto di congiunzione con il corpo scala, in modo da avere due travi distinte.

A questo punto dobbiamo creare i piani superiori, per farlo selezioniamo il piano 0 e con il comando CTRL+R copiamo anche la proprietà dei frame, ovvero la sezione, ma non i gruppi.

Linear	Radial N	Airror		
Increm	ents			_
dx	0,			
dy	0,			
dz	3,5			
		F	Pick Two Points on Model	
Numt	nent Data Der 2		Replicate Options Modify/Show Replicate Options 10 of 11 active boxes are selected	
		R	eset Form to Default Values	
	1	OK	Close Apply	

Una volta copiato il modello ci mettiamo in vista 3d x-y con apertura 0 e assegniamo i frame dei piani 1-2 ai gruppi che abbiamo creato per il piano terra.

Ora facciamo lo stesso anche per il corpo scale.

Definiamo i gruppi da assegnare ai pilastri, divisi per i rispettivi piani 1 e 2 (perimetrali, angolari e centrali). Assegniamo i rispettivi pilastri al gruppo corrispondente.

Ora definiamo i vincoli, assegnando un incastro per ogni pilastro a terra.

Selezioniamo tutte le travi di ogni piano attraverso la 2d view con z ad altezza di ogni rispettivo piano 3,5-7-10,5 e gli assegniamo la **condizione di impalcato** tramite il comando Diaphram.

Passiamo a definire i **casi di carico** creando i seguenti load patterns: **Qa** (moltiplicatore di peso proprio 0), **Qp** (moltiplicatore di peso proprio 0), **Qs** (moltiplicatore di peso proprio 0), **PP** (moltiplicatore di peso proprio 1).

Si definisce poi un load combination con tutti questi carichi, ognuno moltiplicato per il proprio coefficiente maggiorativo da normativa:

- PP: Scale factor = 1,3
- Qs: Scale factor = 1,3
- Qp: Scale factor = 1,5
- Qa: Scale factor = 1,5

Notes	(User-Generated)	M	odify/Show Notes	
Load Combination Type		Linear A	dd	~
)ptions				
Convert to User Load Comb	o Create Noni	near Load Cas	e from Load Combo	
Define Combination of Load Case F	Results			
Load Case Name	Load Case Type	Mode	Scale Factor	
Qa 🗸	Linear Static		1,5	
PP Qs Qs	Linear Static Linear Static		1,3 1,3	Add
Qa	Linear Static		1,5	Modify
				Delete

Consideriamo ora i **carichi di tamponatura**: tramezzi, muri pieni, muri con finestre e muri con porte e finestre.

Consideriamo il carico sulla scala: gradini e pianerottolo.

Inoltre, a tutto ciò va aggiunto il **peso variabile**.

oad Patterns				Self Weight	Auto Lateral	Click To:
Load Pattern Name		Туре		Multiplier	Load Pattern	Add New Load Pattern
DEAD		Dead	~	1	~	Add Copy of Load Pattern
Otpp Otpc_senza scala	^	Dead Dead	^	0 ^	^	Modify Load Pattern
Qtpc_con scala Qtspb_lato balcone Otenm lato SX		Dead Dead		0		Modify Lateral Load Pattern
Otsc_senza scala Otsc_con scala		Dead		0		Delete Load Pattern
OtppM (mensola) OtpcM (mensola)		Dead Dead		0		Show Load Pattern Notes
Q_scala_pianerottolo		Dead		0		

Moltiplichiamo i carichi Qp, Qs, Qa per l'interasse:

Qs*I 3,5x2 = 7 kN/m

Qp*I 3,0x2 = 6 kN/m

Qa*I 2,0x2 = 4 kN/m

Qu = 12,05 kN/m

Calcoliamo il carico sulle travi principali perimetrali

Qtpp = 39,35 Kn/m Qtpc (senza scala) = 52,2 Kn/m Qtpc (con scala) = 26,1 kN/m

Calcoliamo il carico sulle travi secondarie perimetrali

Qtspm = 14,02 kN/m Qtspb = 15,62 kN/m

Trave secondaria balcone 5,25x0,5 = 2,6 kN/m

Trave secondaria centrale (senza scale) Qtsc 9,5 kN/m

Trave secondaria centrale (con scale) Qtsc 6,52 kN/m

Trave principale perimetrale (mensola) Qtpcpm 5,25 kN/m*2 = 10,5 kN/m

Trave principale centrale (mensola) Qtpcm 5,25 kN/m*4 = 21 kN/m

Calcoliamo la trave a ginocchio: Pianerottolo-trave 6 kN/m Qtgp = 8,16 kN/m Qg = 9 kN/m

A questo punto creiamo i load patterns con i carichi distinti per travi principali (con e senza scala), perimetrali e centrali secondarie (con e senza scala), mensola con balcone. Specifichiamo i carichi con finestre o muro pieno. Q per la scala sul pianerottolo e la trave a ginocchio.

PP*1,3

Qs*1,3

Qp*1,5

Qp*1,5

CARICHI:

- Tramezzi = 1kN/m²
- Muro = $10kN/m^2$
- Finestre = 8kN/m²
- Muro con porte e finestre = 7kN/m²
- Gradini = 2,5kN/m²
- Pianerottolo = 5kN/m²
- Peso variabile = 1,8kN/m²

NOTA: la moltiplicazione per il coefficiente di sicurezza (SCALE FACTOR) è stata fatta preventivamente, successivamente è stato moltiplicato il peso proprio PP con il coefficiente di sicurezza nella LOAD COMBINATIONS.

Assegniamo i carichi creati (DISTRIBUTED LOADS)

P

e

0

Su Autocad disegniamo le piante indicanti i carichi con le rispettive Aree d'influenza Ai delle travi.

A questo punto possiamo avviare l'analisi.

Visualizziamo la **struttura deformata** tramite il comando SHOW DEFORMED SHAPE.

Ora, tramite il comando SHOW FORCES/STRESSES-FRAMES/CABLES/TENDONS, visualizziamo i diagrammi del momento in XZ.

Ora visualizziamo il diagramma del momento in YZ, lato balcone (sbalzo).

Ora il diagramma dello sforzo assiale dei pilastri.

Ora mettiamo in evidenza i diagrammi del momento 33 con i relativi valori scaturiti dall'analisi.

Vista XZ:

Per vedere i diagrammi trasversali ci posizioniamo in vista 2D (SET 2D VIEW) e selezioniamo l'asse

YZ:

Infine, posizioniamo la vista trasversale dal lato opposto inserendo 24m come valore sull'asse X, affinché si vedano i diagrammi della facciata con gli sbalzi.

YZ:

Per visualizzare le tabelle: Display – Show Tables, scegliamo i casi di carico con Select Load Patterns e spuntiamo **ANALYSIS RESULTS**.

Nella tabella che si apre scegliamo Elements Forces/Frames, valori che saranno utilizzati per il successivo dimensionamento.

Bite	nert Faxes - 1	Fames							-		×	
FM	Viny Edit	Formult-Filter-Sart Scient	Options								_	
Unite Filter	Astivited				D	ernent Forgaa	France				-	
	Etamé Test	Station OutputCase	Case Type Text	7 KN	V2 64	¥3 89	T KN.m	M2 DLm	M	Tranelian Text	1.0	
	1	S Q_accele_pie	LisSiate:	0	6.021	8	-0.001	-6.0308-10	6.0445	34	11	
	8	8.5 Q.4190.09	LinState		4,021		-0.001	-8.5338-18	6,2341	3.5		
	3	1.0,000,00	UNSIANC	0	8,029		-0.001	4.9195-10	0.0256	34		
	1	15 0,300,00	LHSME	0	100.9	1	-0.001	-0,9596-18	0,0132	3-1		
	3	2.0_5148_08	LinState	0	0,021	0	-0,601	8,9396-18	0,0625	3.1	- 1	
	3	25 Q.3088.38	ListState	0	6.021		-5.001	-63396-18	-0.0077	34	- 1	
	1	3 0,5558,58	LNSME	0	1,021		-0,001	-0,9396-18	-4, 1162	34	- 11	
	1	3.5 Q_6120_00	LHISTAGE	D	6,021		-2.001	-1,9396-10	-4.3297	21	- 11	
		4 9,5088,04	LHSteld	0	8,021		-0.001	-0.8396-18	9.0391	21	- 11	
	1	1.0 100 10	Lin State	0	4.024		-0.001			54	11	
	1	E D attention	LaDate		4.04	1.402.10	4.8167	4,3,4,4,4		23	11	
	1	ES O area or	Linshite	5	2.04	1.459.18	.8.8%27	\$7152.35	.0.1432	3.1	11	
	3	1 0, ecse gr.	LinState	0	-8.54	-3.4096-10	-0.6167	14695-10	4.1295	5.1		
	3	15 0_sow.gr	LinState	0	4.04	-5,4096-18	-0.0107	5,2146-18	-0,1004	5.1	1	
4		N									>	
Record	E (41) (4)	1 3 19 0140	190					Add Tables	ter i la la	Dane		
											-	

Esportiamo questa tabella su Excel e ne ricaviamo i valori del momento M3 per le travi:

<u>TRAVI</u>

Salvataggio	automatico 💽 🔡 🕯	9 - 9 - =			Cartel1 - E	xcel			Cerca					
File Ho	me Inserisci Layoi	ut di pagina	Formule	Dati Re	visione V	fisualizza	Guida							
The X Tag	ilia Calibri	× 11 - ×	A* A* =	= = %	eb Test	to a capo		Generale	~			Norm	nale	Neutrale
Incolla Co	pla v G C S		A =	= = -			÷	m av	00. 0.0 00	Formattazione	Formatta con	valo	re non v	Valore v
- 🗳 Coj	pia formato	• <u> </u>	· 🔶 · 👘 =			sci e allinea i	il centro 💌	ME * 70	00-00-00	condizionale ~	tabella ~			
Appunt	i 15	Carattere	5		Allineament	0	Fa	Num	eri 5a			50	N.	
J4	• × ✓ fr	-399,2709												
	8 6	D	F	F	G	н		-1	ĸ	0 24 14	м	N	0	p
1 TABLE: EI	ement Forces - Frames										19	13	ý	- <u>*</u> .
2 Frame	Station OutputCase	CaseType	Р	VZ	V3	т	M2	M3	FrameElem	ElemStation				
3 12	0 COMB1	Combination	0	-277.375	1,303E-15	-1,9377	-1,665E-16	-399,6079	12-1	0				
4 32	0 COMB1	Combination	0	-277,156	1,74E-15	4,1711	1,591E-15	-399,2709	32-1	0				
5 81	0 COMB1	Combination	0	-276,731	-6,031E-15	-2,1143	-6,198E-15	-398,7681	81-1	0				
6 100	0 COMB1	Combination	0	-276,567	4,163E-17	4,0383	-1,388E-16	-398,5129	100-1	0				
7 149	0 COMB1	Combination	0	-276,937	-6,517E-15	-3,8843	-5,962E-15	-398,1711	149-1	0				
8 168	0 COMB1	Combination	0	-276,832	-6,517E-15	4,7958	-1,082E-15	-397,9925	168-1	0				
9 98	6 COMB1	Combination	0	348,576	-2,299E-17	0,5469	9,235E-16	-355,7807	98-1	6				
10 79	6 COMB1	Combination	-2,059E-13	346,909	2,078E-16	1,4128	2,377E-16	-353,1369	79-1	6				
11 30	6 COMB1	Combination	0	344,381	1,028E-16	0,1018	-3,908E-16	-339,8977	30-1	6				
12 10	6 COMB1	Combination	-8,882E-16	343,847	-1,112E-16	1,5566	4,543E-16	-339,2575	10-1	6				
13 166	6 COMB1	Combination	0	344,279	2,347E-16	-0,2553	-8,354E-16	-328,2465	166-1	6				
14 148	5 COMB1	Combination	0	297,693	-5,725E-17	-0,2472	2,862E-16	-327,4542	148-1	5				
15 167	5 COMB1	Combination	0	297,361	3,223E-16	0,2205	-1,188E-15	-327,0405	167-1	5				
16 86	0 COMB1	Combination	-1,887E-15	-307,144	-1,991E-16	0,0426	-4,069E-16	-326,7125	86-1	0				
17 108	6 COMB1	Combination	0	306,932	-2,072E-16	0,0325	8,751E-16	-326,081	108-1	6				
18 147	6 COMB1	Combination	-1,443E-14	342,594	8,851E-17	-0,2484	-1,427E-15	-325,5874	147-1	6				
19 154	0 COMB1	Combination	-4,064E-13	-304,77	2,225E-16	-0,1325	7,98E-17	-320,4426	154-1	0				
20 176	6 COMB1	Combination	0	304,694	4,228E-17	-0,022	-1,249E-16	-320,2443	176-1	6				
21 17	0 COMB1	Combination	-9,961E-14	-304,366	1,057E-16	0,008	2,003E-16	-319,8531	17-1	0				
22 40	6 COMB1	Combination	0	304,084	-4,368E-17	-0,0321	2,926E-16	-318,9949	40-1	6				
23 11	5 COMB1	Combination	0	294,365	-9,324E-18	-0,0372	8,782E-17	-304,0292	11-1	5				
24 31	5 COMB1	Combination	0	294,149	-8,023E-18	0,0828	-3,737E-16	-303,4905	31-1	5				
25 85	0 COMB1	Combination	8,882E-16	-299,343	1,813E-16	-0,1792	6,641E-16	-302,2757	85-1	0				
26 80	5 COMB1	Combination	0	296,661	9,064E-17	-0,056	-1,136E-15	-301,7591	80-1	5				
27 109	6 COMB1	Combination	0	299,169	-2,299E-17	-0,0135	9,235E-16	-301,731	109-1	6				
28 99	5 COMB1	Combination	0	296,352	4,29E-16	0,1279	-2,161E-15	-301,2115	99-1	5				
29 177	0 COMB1	Combination	0	-296,745	2,347E-16	0,3635	5,726E-16	-289,2025	177-1	0				
30 16	0 COMB1	Combination	-6,217E-15	-295,471	-1,101E-16	-0,2272	-6,523E-16	-289,1342	16-1	0				
31 153	6 COMB1	Combination	4,229E-13	296,701	-2,533E-16	-0,2983	1,177E-15	-289,1196	153-1	6				
32 41	6 COMB1	Combination	0	295,208	1,028E-16	0,0483	-3,908E-16	-288,3369	41-1	6				
33 41	0 COMB1	Combination	.0	-294,713	1,028E-16	0,0483	2,262E-16	-286,8514	41-1	0				
34 16	6 COMB1	Combination	-6,217E-15	294,449	-1,101E-16	-0,2272	8,457E-18	-286,0691	16-1	б				
35 153	0 COMB1	Combination	4,229E-13	-293,219	-2,533E-16	-0,2983	-3,428E-16	-278,6724	153-1	0				
36 177	6 COMB1	Combination	0	293,176	2,347E-16	0,3635	-8,354E-16	-278,4953	177-1	6				
37 10	0 COMB1	Combination	-8,882E-16	-323,174	-1,112E-16	1,5566	-2,13E-16	-277,2378	10-1	0				
38 109	0 COMB1	Combination	0	-290,751	-2,299E-17	-0,0135	7,856E-16	-276,4758	109-1	0				
39 85	6 COMB1	Combination	8,882E-16	290,577	1,813E-16	-0,1792	-4,238E-16	-275,9777	85-1	6				
40 30	0 COMB1	Combination	0	-322,64	1,028E-16	0,1018	2,262E-16	-274,6758	30-1	0				
41 79	0 COMB1	Combination	-2,059E-13	-320,111	2,078E-16	1,4128	1,484E-15	-272,7433	79-1	0				
42 147	0 COMB1	Combination	-1,443E-14	-324,426	8,851E-17	-0,2484	-8,962E-16	-271,0845	147-1	0				
43 12	0,5 COMB1	Combination	0	-240,071	1,303E-15	-1,9377	-8,181E-16	-270,2452	12-1	0,5				
4. 1	Element Forces - Frames	Program Co	ontrol (+)									1.4	

TRAVI PRINCIPALI CENTRALI (h55,b30)

- M Max = 204,3 kN/m → 204300 Nm
- Hu = r*rad (H:b) = 2,46xrad(6810) = 0,62xrad(6810) = 51
- H = 56 > 55 <u>NON VERIFICATA</u>

Scegliamo quindi travi $60x30 \rightarrow OK$

TRAVI PRINCIPALI PERIMETRALI (h55,b30)

- M Max = 158,6 kN/m → 158600 Nm
- Hu = 0,62xrad(158600:30) \rightarrow 45
- H = 50 <u>VERIFICATA</u>

MENSOLE CENTRALI (h50,b30)

- M Max = 399,6 kN/m → 399600 Nm
- Hu = 0,62xradq(399600:30) = 71,5
- $H = Hu + \delta = 76,5$ <u>NON VERIFICATA</u>

Scegliamo quindi $80x30 \rightarrow OK$

MENSOLE PERIMETRALI (h50,b30)

- M Max = 254,6 kN/m → 254600 Nm
- Hu = 57,11
- H = 62 <u>NON VERIFICATA</u>

Scegliamo quindi $65x30 \rightarrow OK$

TRAVI SECONDARIE (h35,b25)

- M Max = 36,9 kN/m → 36900 Nm
- Hu = 23,81
- H = 28,81 <u>VERIFICATA</u>
- -

Visualizziamo i diagrammi su SAP:

- Trave principale

- Mensole

<u>PILASTRI</u>

s	alvataggio a	utomatico (- 8	१• ९- ₹		Carte	l2 - Excel		Q	Cerca					
Fi	ile <u>Ho</u> r	ne Inse	risci Layo	ut di pagina	Formule	Dati F	levisione	Visualizza	Guida						
Ľ		lia	Calibri	v 11 v	A^ A* 3		9~ ep	Testo a capo		Gene	rale	-]		
Inc	olla		GCS	• 🖽 • 💩	. <u>A</u> . I	FEE	三三 🖽	Unisci e alline	a al centro	· 🛯	% 000 58	00 Formatta	zione Forr	natta come	Stili In
	 Cot 	na tormato								-		condizion	tale 1	abella *	Cend *
	Appunt	13	41) 	Carattere	191		Allineam	ento		(24)	Numeri	121)	51	61.	
E1	3	• I 2	√ fx	-2747,909											
1	Α	В	с	D	E	F	G	н	I.	J	к	L	м	N	0
1	TABLE: EN	ement Ford	es - Frames												
2	Frame	Station	OutputCase	CaseType	P	V2	V3	Т	M2	M3	FrameElem	ElemStation			
3	Text	m	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m	Text	m			-
4	52	3,5	COMB1	Combination	-2504,119	17,037	1,409	0,0479	-1,1046	-33,4442	52-1	3,5			
5	8	3,5	COMB1	Combination	-2507,993	17,114	1,354	0,0479	-0,9745	-33,4695	8-1	3,5			
6	52	1,75	COMB1	Combination	-2604,19	17,037	1,409	0,0479	1,3619	-3,6287	52-1	1,75			
7	8	1,75	COMB1	Combination	-2608,063	17,114	1,354	0,0479	1,3953	-3,5196	8-1	1,75			
8	49	3,5	COMB1	Combination	-2647,839	-19,696	-43,856	-1,6614	41,7996	51,8952	49-2	1,75			
9	52	0	COMB1	Combination	-2704,26	17,037	1,409	0,0479	3,8284	26,1868	52-1	0			
10	8	0	COMB1	Combination	-2708,134	17,114	1,354	0,0479	3,7652	26,4302	8-1	0			
11	22	0	COMB1	Combination	-2743,363	14,756	-5,019	0,0479	-14,2695	41,5925	22-1	0			
12	23	0	COMB1	Combination	-2747,859	-21,942	2,287	0,0479	2,7054	-44,8409	23-1	0			
13	49	1,75	COMB1	Combination	-2747,909	-19,696	-43,856	-1,6614	-34,9483	17,4279	49-2	0			
14	48	3,5	COMB1	Combination	-2751,888	21,824	1,969	0,0479	-1,9566	-44,7175	48-1	3,5			
15	22	1,75	COMB1	Combination	-2843,433	14,755	-5,019	0,0479	-5,4863	15,7704	22-1	1,75			
16	23	1,75	COMB1	Combination	-2847,93	-21,942	2,287	0,0479	-1,2973	-6,4419	23-1	1,75			
17	48	1,75	COMB1	Combination	-2851,958	21,824	1,969	0,0479	1,4898	-6,5258	48-1	1,75			
18	49	1,75	COMB1	Combination	-2858,632	10,367	61,925	1,7573	-54,0829	-10,6701	49-1	1,75			
19	22	3,5	COMB1	Combination	-2943,504	14,755	-5,019	0,0479	3,297	-10,0517	22-1	3,5			
20	23	3,5	COMB1	Combination	-2948	-21,942	2,287	0,0479	-5,3001	31,9571	23-1	3,5			
21	48	0	COMB1	Combination	-2952,029	21,824	1,969	0,0479	4,9361	31,6659	48-1	0			
22	49	0	COMB1	Combination	-2958,702	10,367	61,925	1,7573	54,286	7,4723	49-1	0			
23															
24															
25															
26															
27															
28															
29		lamont for	Frank Frank	Draman C	anten!	0								- AL	-
		ciement Fo	rces - Frame	Program Co	ontrol	Ð								1	

PILASTRI P.T. CENTRALI IN CLS28/32 (40x40) FRAME 49

- N = 2952 kN
- M = 31,6
- e = M:N = 0,010m \rightarrow 1cm

1cm < H/6 <u>PICCOLA ECCENTRICITÀ</u>

```
Fcd = 15,9 Mpa
```

```
I (Momento d'Inerzia) = (b*h<sup>3</sup>)/12 = 213333,33 m<sup>3</sup>
```

Wx (Modulo di resistenza a flessione) = $(b^*h^2)/6 = 10666,66 \text{ m}^3$

σN = (N*10):A = 18,45 Mpa

σm = (M*1000):Wx = 2,96 Mpa

σMax = 21,41 Mpa > fcd NON VERIFICATO (dobbiamo scegliere pilastri rettangolari)

PILASTRI CENTRALI PIANO PRIMO (35x35) FRAME 117

- N = 1998,8 kN/m
- M = 47,83 kN/m
- e = M:N = 0,24m \rightarrow 24cm \rightarrow H/6 < 24cm < H/2 MODERATA ECCENTRICITÀ

Fcd = 15,9 Mpa

 $I = bh^{3}/(12) = 125052, 08 \text{ cm}^{4}$

Wx = bh²/6 = 7145, 83 cm³

σN = 16,27 Mpa

σM = 4,48 Mpa

 σ Max = σ N + σ M = 20,75 > fcd <u>NON VERIFICATA</u> (dobbiamo scegliere un pilastro a sezione rettangolare)

PILASTRI CENTRALI PIANO 2 (30x30) FRAME 185

- N = 1012,4 kN
- M = 33,42 kN/m
- e = M:N = 0,33m \rightarrow 33cm \rightarrow H/6 < 33cm < H/2 MODERATA ECCENTRICITÀ

fcd = 15,9 Mpa

I = bh³/(12) = 67500 Mpa

 $Wx = bh^2/6 = 4500 Mpa$

σN = 11,24 Mpa

σM = 7,42 Mpa

 σ Max = σ N + σ M = 18,66 > fcd <u>NON VERIFICATA (dobbiamo scegliere un pilastro a sezione rettangolare)</u>

RENDER:

