
Esercitazione 2 – Ripartizione delle forze sismiche con il metodo delle rigidezze

In questa esercitazione andremo ad analizzare la ripartizione delle forze sismiche in una struttura di un edificio ad un piano.

Per questo studio adotteremo un impalcato in Cemento armato costituito da telai shear type e ne calcoleremo il centro delle masse, il centro delle rigidezze e il suo comportamento quando sottoposto a forza sismica orizzontale.

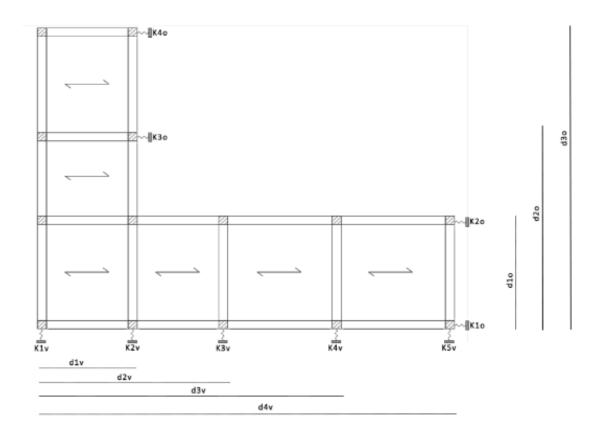
Disegno la pianta del telaio e li numero:

- Telaio 1 verticale: 1-6-11-13

- Telaio 2 verticale: 2-7-12-14

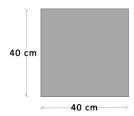
Telaio 3 verticale: 3-8Telaio 4 verticale: 4-9

- Telaio 5 verticale: 5-10


- Telaio 1 orizzontale: 1-2-3-4-5

- Telaio 2 orizzontale: 6-7-8-9-10

- Telaio 3 orizzontale: 11-12


- Telaio 4 orizzontale: 13-14

Ora vado a disegnare le rigidezze dei controventi orizzontali e verticali (Kv e Ko) dei singoli telai e le loro distanze (dV e dO). Per essere rappresentate usiamo una molla, che raffigura la reazione alle spinte orizzontali di questi controventi.

Adesso passo a calcolare la rigidezza di ogni singolo telaio. Per fare ciò, ho bisogno del modulo di Young, del momento di inerzia di ogni pilastro, e l'altezza.

Per il momento d'inerzia, data la forma quadrata del pilastro, useremo la formula $b_4/12$ ($b*h_3/12$ con h e b uguali).

Quindi ho:

Modulo di Young – $21000 N/mm^2$

Altezza pilastri – 3,50 m

Momento d'inerzia
– 213333 cm 4 (sezione quadrata di lato 40 cm)

Sulle tabelle di excel trovo il valore della rigidezza traslante (K) che sarà calcolata come: $K=12*EI/h^3$

		Step 1: calcolo delle rigid	ezze traslanti dei controv	enti dell'edi	ificio
Telaio 1v	1-6-11-13	pilastri che individuano il telaio	Telajo 1o	1-2-3-4-5	pilastri che individuano il telaio
E(N/mmq)	21000,00	modulo di Young	E		modulo di Young
H(m)	3,50	akezza dei pilastri	i ii	3,50	altezza dei pilastri
L1(cm ⁴)	2133333.00	momento d'inerzia pilastro 1	L1	2133333.00	momento d'inerzia pilastro 1
L2	213333,00	momento d'inerzia pilastro 2	L2		momento d'inerzia pilastro 2
L3	213333,00	momento d'inerzia pilastro 3	L3	2133333.00	momento d'inerzia pilastro 3
	213333,00	momento d'inerzia pilastro 4	L4		momento d'inerzia pilastro 4
_T (KN/m)	50155,02	rigidezza traslante telaio 1	L5		momento d'inerzia pilastro 5
			K_T		rigidezza traslante telaio 5
Telaio 2v	2-7-12-14	pilastri che individuano il telaio			
E	21000,00	modulo di Young	Telaio 2o	6-7-8-9-1	pilastri ohe individuano il telaio
Н	3,50	akezza dei pilastri	E		modulo di Young
L1	213333,00	momento d'inerzia pilastro 1	T H	3,50	altezza dei pilastri
L2	213333,00	momento d'inerzia pilastro 2	L1		momento d'inerzia pilastro 1
L3	213333,00	momento d'inerzia pilastro 3	L2		momento d'inerzia pilastro 2
L4	213333,00	momento d'inerzia pilastro 4	L3	2133333.00	momento d'inerzia pilastro 3
K_T	50155,02	rigidezza traslante telaio 2		2133333,00	momento d'inerzia pilastro 4
			L5		momento d'inerzia pilastro 5
Telaio 3v	3-8	pilastri che individuano il telaio	K_T	62693,78	rigidezza traslante telajo 6
Ε	21000,00	modulo di Young			
н	3,50	akezza dei pilastri	Telaio 3o	11-12	pilastri che individuano il telaio
L1	213333.00	momento d'inerzia pilastro 1	E	21000.00	
L2	213333,00	momento d'inerzia pilastro 2	Н	3,50	altezza dei pilastri
L3	0,00	momento d'inerzia pilastro 3	L1		momento d'inerzia pilastro 1
L4	0,00	momento d'inerzia pilastro 4	L2		momento d'inerzia pilastro 2
K_T	25077,51	rigidezza traslante telaio 3	L3	0,00	momento d'inerzia pilastro 3
			L4	0,00	momento d'inerzia pilastro 4
Telaio 4v	4-9	pilastri che individuano il telaio	K_T	25077,51	rigidezza traslante telaio 7
Ε	21000,00	modulo di Young			
н	3,50	akezza dei pilastri	Telaio 4o	13-14	pilastri che individuano il telaio
L1	213333,00	momento d'inerzia pilastro 1	F		modulo di Young
L2	213333,00	momento d'inerzia pilastro 2	Н	3,50	altezza dei pilastri
L3	0,00	momento d'inerzia pilastro 3	L1		momento d'inerzia pilastro 1
L4	0,00	momento d'inerzia pilastro 4	L2		momento d'inerzia pilastro 2
K_T	25077,51	rigidezza traslante telaio 4	L3	0,00	momento d'inerzia pilastro 3
			L4	0,00	momento d'inerzia pilastro 4
Telaio 5v	5-10	pilastri che individuano il telaio	K_T	25077,51	rigidezza traslante telaio 7
E	21000,00	modulo di Young			
Н	3,50	altezza dei pilastri			
L1	213333,00	momento d'inerzia pilastro 1			
L2	2133333,00	momento d'inerzia pilastro 2			
L3	0,00	momento d'inerzia pilastro 3			
L4	0,00	momento d'inerzia pilastro 4			
K_T	25077,51	rigidezza traslante telaio 4			

Il passaggio successivo è quello di scrivere le distanze orizzontali e verticali dei singoli controventi rispetto all'origine.

49	c	ton 2. tahalla	sinottica controventi e distanze
50	3	tep 2: tabella	Sinottica controventi e distanze
51			
52	Kv1(KN/m)	50155,02	rigidezza traslante contr.vert.1
53	Kv2	50155,02	rigidezza traslante contr.vert.2
54	Kv3	25077,51	rigidezza traslante contr.vert.3
55	Kv4	25077,51	rigidezza traslante contr.vert.4
56	Kv5	25077,51	rigidezza traslante contr.vert.5
57	dv2 (m)	4,00	distanza orizzontale controvento dal punto O
58	dv3	8,00	distanza orizzontale controvento dal punto O
59	dv4	13,00	distanza orizzontale controvento dal punto O
60	dv5	18,00	distanza orizzontale controvento dal punto O
61	Ko1(KN/m)	62693,78	rigidezza traslante contr.orizz.1
62	Ko2	62693,78	rigidezza traslante contr.orizz.2
63	Ko3	25077,51	rigidezza traslante contr.orizz.3
64	Ko4	25077,51	rigidezza traslante contr.orizz.4
65	do2	5,00	distanza verticale controvento punto O
66	do3	9,00	distanza verticale controvento punto O
67	do4	14,00	distanza verticale controvento punto O
68			

In seguito trovo il centro di massa come sommatoria delle distanze dei singoli centri di massa rispetto agli assi x o y, moltiplicate per le rispettive aree e dividendo il totale per l'area complessiva.

 $Gmx = \sum xG*Ai/Atot$

 $Gmy = \sum yG^*Ai/Atot$

70 71		Step 3: o	alcolo del centro di massa
72			
73	area_1(mg)	90,00	misura dell'area superficie 1area 1 (misura)
74	x_G1(m)	9,00	coordinata X centro area 1
75	<u>y_G1</u>	2,50	coordinata Y centro area 1
76	area_2	36,00	misura dell'area superficie 2
77	x_G2	4,50	coordinata X centro area 2
78	<u>y_</u> G2	2,00	coordinata Y centro area 2
79	Area tot (mg	126,00	Area totale impalcato
80	X_G	7,71	coordinata X centro d'area impalcato (centro massa)
81	Y_G	2,36	coordinata Y centro d'area impalcato (centro massa)
0.0			

Calcolo ora le coordinate del centro di rigidezza, e le distanze di ogni singolo controvento da queste. Per trovare le coordinate calcolo la sommatoria del prodotto tra le rigidezze di ogni controvento per le rispettive distanze (verticali o orizzontali) e il totale diviso la rigidezza verticale o orizzontale totale.

 $Grx = \sum Kvi*dvi/Kvtot$

 $Gry = \sum Koi*doi/Kotot$

Trovo cosi la rigidezza torsionale totale della struttura.

$$K\gamma = \sum Ki^*di^2$$

0.0			
84			
85	Step 4: calcolo del centro di rigidezze e delle rigidezze globali		
86			
87	Ko tot	175542,58	rigidezza totale orizzontale
88	Kv_tot	175542,58	rigidezza totale verticale
89	X_C (m)	6,71	coordinata X centro rigidezze
90	Y_C	5,07	coordinata Y centro rigidezze
91	dd_v1	-6,71	distanze controvento dal centro rigidezze
92	dd_v2	-2,71	distanze controvento dal centro rigidezze
93	ddv3	1,29	distanze controvento dal centro rigidezze
94	dd_v4	6,29	distanze controvento dal centro rigidezze
95	ddv5	11,29	distanze controvento dal centro rigidezze
96	ddo1	-5,07	distanze controvento dal centro rigidezze
97	ddo2	-0,07	distanze controvento dal centro rigidezze
98	ddo3	3,93	distanze controvento dal centro rigidezze
99	<u>dd_</u> 04	8,93	distanze controvento dal centro rigidezze
100	K_\(\phi\) (KN'm)	10855878,95	rigidezza torsionale totale

Adesso passo a definire i carichi strutturali, permanenti ed accidentali che agiscono sul solaio. Dalla somma dei carichi strutturali, permanenti e accidentali della struttura (qs, qp e qa), calcolo i carichi sismici che verrano ripartiti lungo gli assi X e Y per ogni controvento.

			1	
		Step !	5: analisi dei carichi sismici	
q_s(KM	M≀ma1	2,50	carico permanente di natura strutturale	
<u>۳۰,۳۰</u>		2,50	sovraccarico permanente	
ع ا		5,00	sovraccarico accidentale	
		630,00	carico totale permamente	
G (K				
Q(K	avj	630,00	carico totale accidentale	
y		0,80	coefficiente di contemporaneità	
- W (K	(N)	1134,00	Pesi sismici	
С		0,10	coefficiente di intensità sismica	
FſΚ	(N)	113,40	orza sismica orizzontale	
	S	tep 6: rip	eartizione forza sismica lungo X	
M (KN	V'm)	307,64	momento torcente (positivo se antiorario)	
u_0		0,001	traslazione orizzontale	
φ		0,00003	rotazione impalcato (positiva se antioraria)	
Fv1(i		-9,54	Forza sul controvento verticale 1	
Fv		-3,85	Forza sul controvento verticale 2	
Fv		0,92	Forza sul controvento verticale 3	
Fν		4,47	Forza sul controvento verticale 4	
F۷		8,02	Forza sul controvento verticale 5	
Fo		31,49	Forza sul controvento orizzontale 1	
Fo	2	40,38	Forza sul controvento orizzontale 2	
Fo	3	18,99	Forza sul controvento orizzontale 3	
Fo	4	22,55	Forza sul controvento orizzontale 4	
		113,40		
		,	40,50	
			40,50	
			16,20	
			16,20	
_			113,40	
_		Step 7:	ripartizione forza sismica lungo Y	
M	1(KN°M)) 113,89	momento torcente	
	_o (KN)			
	φ	0,0000	1 rotazione impalcato	
F	7v1 (KN)		•	
<u> </u>	Fv2	30,97		
	Fv3	16,54		
	Fv4	17,85		
	IVT			
	Fu5	19 17		
	Fv5	19,17		
	Fo1	-3,33	Forza sul controvento orizzontale 1	
	Fo1 Fo2	-3,33 -0,05	Forza sul controvento orizzontale 1 Forza sul controvento orizzontale 2	
	Fo1 Fo2 Fo3	-3,33 -0,05 1,03	Forza sul controvento orizzontale 1 Forza sul controvento orizzontale 2 Forza sul controvento orizzontale 3	
	Fo1 Fo2	-3,33 -0,05 1,03 2,35	Forza sul controvento orizzontale 1 Forza sul controvento orizzontale 2 Forza sul controvento orizzontale 3 Forza sul controvento orizzontale 4	
	Fo1 Fo2 Fo3	-3,33 -0,05 1,03	Forza sul controvento orizzontale 1 Forza sul controvento orizzontale 2 Forza sul controvento orizzontale 3 Forza sul controvento orizzontale 4	
	Fo1 Fo2 Fo3	-3,33 -0,05 1,03 2,35	Forza sul controvento orizzontale 1 Forza sul controvento orizzontale 2 Forza sul controvento orizzontale 3 Forza sul controvento orizzontale 4 32,40	
	Fo1 Fo2 Fo3	-3,33 -0,05 1,03 2,35	Forza sul controvento orizzontale 1 Forza sul controvento orizzontale 2 Forza sul controvento orizzontale 3 Forza sul controvento orizzontale 4 32,40 32,40	
	Fo1 Fo2 Fo3	-3,33 -0,05 1,03 2,35	Forza sul controvento orizzontale 1 Forza sul controvento orizzontale 2 Forza sul controvento orizzontale 3 Forza sul controvento orizzontale 4 32,40 32,40 16,20	
	Fo1 Fo2 Fo3	-3,33 -0,05 1,03 2,35	Forza sul controvento orizzontale 1 Forza sul controvento orizzontale 2 Forza sul controvento orizzontale 3 Forza sul controvento orizzontale 4 32,40 32,40	