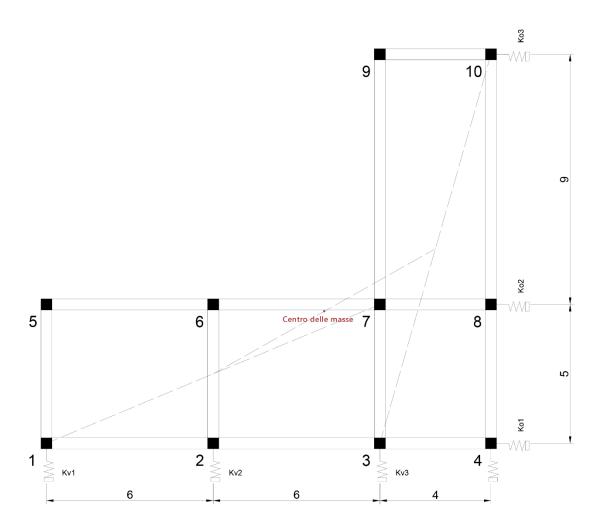
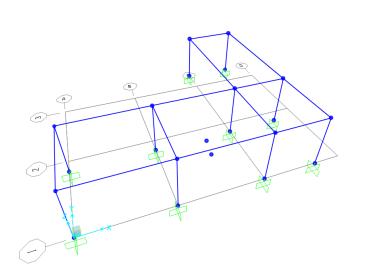

Esercitazione n. 2

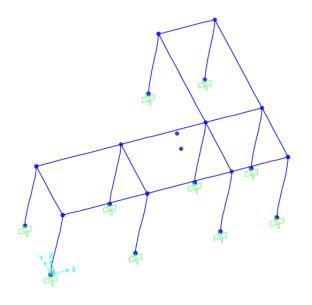
Centro delle rigidezze e ripartizione delle forze sismiche

- 1) Telaio Shear-type costituito da 4 telai (verticalmente) e 3 telai (orizzontalmente) disposti come da tabella (pag 2).
 - La sua rigidezza equivale a $K = \frac{12EI}{H^3}$
- 2) Trovo i valori d_{vi} e d_{oi} che mostrano la distanza di ogni telaio dal punto di origine del sistema (angolo in basso a sinistra).
- 3) Individuo il Centro di massa. Ipotizzando un impalcato uniforme, calcolo le coordinate del CM tramite le formule:

$$x_c = \sum (k_{vi})(d_{vi})/k_{v_tot}$$
$$y_c = \sum (k_{oi})(d_{oi})/k_{o_tot}$$


- **4)** Non coincidendo il centro delle rigidezze con quello di massa, se sottopongo l'impalcato ad un carico orizzontale, esso tenderà a ruotare per il braccio tra il punto di applicazione della forza (CM) e il centro delle rigidezze, causando momento.
- **5)** Ipotizzo un carico strutturale (per stimare la forza sismica che potrebbe agire sull'impalcato), un carico permanente e un sovraccarico accidentale di 4 kN/mq ciascuno. Li considero per l'intero edificio, li sommo e li riduco per un coefficiente di intensità sismica: ottengo il valore della forza sismica orizzontale.
- **6)** Le ultime tabelle (pag. 4) mostrano la ripartizione di forza sismica lungo le due direzioni principali, mostrando i dati per le traslazioni e le torsioni.
- 7) Analizzo il tutto Tramite SAP.




Step 1: calcolo delle rigidezze traslanti dei controventi dell'edificio

Telaio 1v	1-5	pilastri che individuano il telaio	Telaio 1o	1-2-3-4	pilastri che individuano il telaio
E (N/mmq)	21000,00	modulo di Young	Е	21000,00	modulo di Young
H (m)	4,00	altezza dei pilastri	Н	4,00	altezza dei pilastri
I_1 (cm^4)	213333,00	momento d'inerzia pilastro 1	I_1	213333,00	momento d'inerzia pilastro 1
I 2	213333,00	momento d'inerzia pilastro 2	12	213333.00	momento d'inerzia pilastro 2
I 3		momento d'inerzia pilastro 3	I 3		momento d'inerzia pilastro 3
 I 4		momento d'inerzia pilastro 4	I 4	213333,00	momento d'inerzia pilastro 4
K_T (KN/m)	16799,97	rigidezza traslante telaio 1	K_T	33599,95	rigidezza traslante telaio 5
Telaio 2v	2-6	pilastri che individuano il telaio	Telaio 2o	5-6-7-8	pilastri che individuano il telaio
Е	21000,00	modulo di Young	Е	21000,00	modulo di Young
Н	4,00	altezza dei pilastri	Н	4,00	altezza dei pilastri
I_1	213333,00	momento d'inerzia pilastro 1	I_1	213333,00	momento d'inerzia pilastro 1
I 2	213333,00	momento d'inerzia pilastro 2	12	213333,00	momento d'inerzia pilastro 2
 I_3		momento d'inerzia pilastro 3	I_3		momento d'inerzia pilastro 3
 I_4	0,00	momento d'inerzia pilastro 4	I 4		momento d'inerzia pilastro 4
K_T	16799,97	rigidezza traslante telaio 2	K_T		rigidezza traslante telaio 6
Telaio 3v	3-7-9	pilastri che individuano il telaio	Telaio 3o	9-10	pilastri che individuano il telaio
Е	21000,00	modulo di Young	Е	21000,00	modulo di Young
Н	4,00	altezza dei pilastri	Н	4,00	altezza dei pilastri
I_1		momento d'inerzia pilastro 1	I_1		momento d'inerzia pilastro 1
I_2		momento d'inerzia pilastro 2	I_2		momento d'inerzia pilastro 2
I_3		momento d'inerzia pilastro 3	I_3	0,00	momento d'inerzia pilastro 3
I_4		momento d'inerzia pilastro 4	I_4	0,00	momento d'inerzia pilastro 4
K_T	25199,96	rigidezza traslante telaio 3	K_T	16799,97	rigidezza traslante telaio 7
Telaio 4v	4-8-10	pilastri che individuano il telaio			
E		modulo di Young			
H	4,00	altezza dei pilastri			
I 1		momento d'inerzia pilastro 1			
1 2		momento d'inerzia pilastro 2			
1 3		momento d'inerzia pilastro 3			
I 4		momento d'inerzia pilastro 4			
K_T		rigidezza traslante telaio 4			
	20100,00	ngraezza trasiante telalo 4			

Step 2: tabella sinottica controventi e distanze			Step 5: analisi dei carichi sismici		
Kv1(KN/m)	16799,97	rigidezza traslante contr.vert.1	q s (KN/mq)	4.00	carico permanente di natura strutturale
Kv2	16799,97	rigidezza traslante contr.vert.2	q_s (rating)	4.00	sovraccarico permanente
Kv3	25199.96	rigidezza traslante contr.vert.3	q_p q_a	4,00	sovraccarico accidentale
Kv4	25199,96	rigidezza traslante contr.vert.4	G (KN)	928.00	carico totale permamente
dv2 (m)	6.00	distanza orizzontale controvento dal punto O	Q (KN)	464.00	carico totale accidentale
dv2 (III)	12,00	distanza orizzontale controvento dal punto O	Q (KN)	0.80	coefficiente di contemporaneità
		·	Ψ	-1	•
dv4	16,00	distanza orizzontale controvento dal punto O	W (KN)	1299,20	Pesi sismici
Ko1(KN/m)	33599,95	rigidezza traslante contr.orizz.1	С	0,10	coefficiente di intensità sismica
Ko2	33599,95	rigidezza traslante contr.orizz.2	F (KN)	129,92	Forza sismica orizzontale
Ko3	16799,97	rigidezza traslante contr.orizz.3			
do2	4,00	distanza verticale controvento punto O		Step 6: ripartizione forza sismica lungo X	
do3	8,00	distanza verticale controvento punto O		Step 6.	Tipar delone force sistince langua
			M (KN*m)	-191,30	momento torcente (positivo se antiorario)
			u_o (m)	0.002	traslazione orizzontale
Step 3: calcolo del centro di massa		3: calcolo del centro di massa	φ	-0,00005	rotazione impalcato (positiva se antioraria)
			Fv1 (KN)	8,35	Forza sul controvento verticale 1
area_1 (mg)	60,00	misura dell'area superficie 1area 1 (misura)	Fv1 (KN)	3,13	Forza sul controvento verticale 1
x_G1 (m)	6,00	coordinata X centro area 1	Fv3	-3,13	Forza sul controvento verticale 2
	2,50		Fv4	-8,35	
y_G1	_	coordinata Y centro area 1		57.53	Forza sul controvento verticale 4
area_2	56,00	misura dell'area superficie 2	Fo1		Forza sul controvento orizzontale 1
x_G2	14,00	coordinata X centro area 2	Fo2	50,58	Forza sul controvento orizzontale 2
y_G2	7,00	coordinata Y centro area 2	Fo3	21,81	Forza sul controvento orizzontale 3
Area tot (mq)	116,00	Area totale impalcato		129,92	54.07
X_G	9,86	coordinata X centro d'area impalcato (centro massa)			51,97
Y_G	4,67	coordinata Y centro d'area impalcato (centro massa)			51,97
					25,98 129.92
Step 4:	calcolo del	centro di rigidezze e delle rigidezze globali		Step 7:	ripartizione forza sismica lungo Y
Vo. tot	02000 07	risido en a tatala arizmantala	M (IZMHI)	24.05	momento torcente
Ko_tot	83999,87	rigidezza totale orizzontale	M (KN*M)	34,05	
Kv_tot X_C (m)	83999,87 9,60	rigidezza totale verticale coordinata X centro rigidezze	v_o (KN)	0,002 0,00001	traslazione verticale rotazione impalcato
	,	-	Fort (ICN)		•
Y_C	3,20	coordinata Y centro rigidezze	Fv1 (KN)	24,50	Forza sul controvento verticale 1
alal4	0.00	distance contravente del contra disidense	Fv2	25,43	Forza sul controvento verticale 2
dd_v1	-9,60 -3.60	distanze controvento dal centro rigidezze	Fv3	39,53	Forza sul controvento verticale 3
dd_v2		distanze controvento dal centro rigidezze	Fv4	40,46	Forza sul controvento verticale 4
dd_v3	2,40	distanze controvento dal centro rigidezze	Fo1	-0,99	Forza sul controvento orizzontale 1
dd_v4	6,40	distanze controvento dal centro rigidezze	Fo2	0,25	Forza sul controvento orizzontale 2
dd_o1	-3,20	distanze controvento dal centro rigidezze	Fo3	0,74	Forza sul controvento orizzontale 3
44 -0	0,80	distanze controvento dal centro rigidezze		129,92	05.00
dd_02		distanze controvento dal centro rigidezze			25,98
dd_o3	4,80				05.00
_		rigidezza torsionale totale			25,98
dd_o3					25,98 38,98 38,98

7)Tramite SAP analizzo la deformazione del mio telaio shear-type (pilastri 40x40 in CA e travi con momento d'inerzia tendente all'infinito, per la sua rigidezza).

Evidenzio il centro di massa e centro delle rigidezze, ai quali assegno il vincolo interno DIAPHRAM,per imporre una rotazione uguale intorno ad un asse. Dopo aver fatto l'analisi dei carichi sismici (ipotizzando il carico permanente strutturale, il sovraccarico permanente e il sovraccarico accidentale), la ripartizione della forza sismica lungo x e lungo y, posso assegnare al centro di massa il carico che ho ottenuto (129,92, vedi a pag. 4) e osservare le deformazioni.