PRE-DIMENSIONAMENTO DI UNA TRAVATURA RETICOLARE SPAZIALE

•DISEGNO GEOMETRICO

Imposto la griglia come base per disegnare il modulo della reticolare. Il modulo avrà dimensioni 3x3x3 m e sarà controventato dalle diagonali.

- •[File/ new model / only grid]
- •[Draw frame]

Copio il modulo (ctrl+c, ctrl+v) fino ad ottenere le dimensioni volute della reticolare da dimensionare. La reticolare avrà dimensioni 14x6x3 m.

Seleziono tutte le diagonali e creo un gruppo "diagonali" per facilitare l'analisi della struttura in diverse parti perché le diagonali avendo una lughezza maggiore e quindi un diverso raggio d'inerzia, andranno dimensionate separatamente.

- •[Define / group / add new group]
- •[Assign / assign to group]

Imposto la vista 2D sul piano X-Y con Z=0, seleziono tutta la struttura e inserisco le cerniere interne, interrompendo la continuità del momento tra le aste connesse, le aste reticolari sono elementi strutturali soggetti solo a sforzo assiale. Dal comando *release / partial fixity* spunto "start" e "end" sul momento in direzione 2-2 e 3-3. Una volta rilasciati i momenti, definisco il materiale dal comando "*define materials*" scelgo l'acciaio S355 secondo le NTC2008. A questo punto importo un'ipotetica sezione tubolare cavo da sagomario (D244,5x5,4 mm) e l'assegno a tutte le aste, da modificare successivamente dopo aver effettuato il pre-dimesionamento.

- •[Assign / frame / release-partial fixity]
- •[Define / section properties / frame section / import new property / steel / pipe]
- •[Assign / frame / frame section]

Dal disegno della pianta realizzata su CAD individuo i punti di appoggio della reticolare ai setti. Una volta individuati applico i vincoli esterni mettendomi sulla vista X-Y con Z=0.

•[Assign / joint / restraints]

S Assign Joint Restraints	×
Restraints in Joint Local Direct	tions
✓ Translation 1	Rotation about 1
✓ Translation 2	Rotation about 2
✓ Translation 3	Rotation about 3
Fast Restraints	Close Apply

ASSEGNAZIONE DEI CARICHI

L'edificio ipotizzato ha una struttura reticolare spaziale che regge 4 piani sospesi. Ogni piano occupa una superficie di 756 mq (ogni cubo della reticolare ha un'area di 6 mq).

Devo calcolare il carico di stato ultimo **q**_u facendo l'analisi dei carichi del solaio tipo. Scelgo un solaio in acciaio.

• Destinazione d'uso : Uffici q_n = 2,00 KN/m²

q_s = q_{lamiera} + q_{c.a}
 q_{lamiera} = 0.11 KN/m² (da catalogo HI-BOND A55/P600)
 q_{c.a} = s_{medio} × gamma = 1,89 KN/m²
 q_s = q_{lamiera} + q_{c.a} = 2,00 KN/m²

```
• q_p = q_{gres} + q_{massetto} + q_{isolante} + q_{impianti} + q_{tramezzi} + q_{controsoffitto}

q_{gres} = 0.40 \text{ KN/m}^2

q_{massetto} = \text{s} + \text{gamma} = 1,56 \text{ KN/m}^2

q_{isolante} = 0,03 \text{ KN/m}^2

q_{impianti} = 0,10 \text{ KN/m}^2

q_{tramezzi} = 1,60 \text{ KN/m}^2

q_{controsoffitto} = 0,40 \text{ KN/m}^2

q_p = q_{gres} + q_{massetto} + q_{isolante} + q_{impianti} + q_{tramezzi} + q_{controsoffitto} = 4,57 \text{ KN/m}^2

q_{i} = 2,00 \text{ KN/m}^2 \times 1,3 + 4,57 \text{ KN/m}^2 \times 1,5 + 2,00 \text{ KN/m}^2 \times 1,5 = 12,45 \text{ KN/m}^2
```

Per ogni pilastro viene considerata l'area di influenza, dove per i perimetrali l'area di influenza è la metà e per gli angolari è 1/4 mentre per quelli centrali è massima ovvero 6 m x 6 m=36 mq. L'area di influenza dei restanti pilastri e dei setti la trovo da *"properties"* selezionando la polilinea. Ogni pilastro dei solai appesi è agganciato alla reticolare da dei tiranti in acciaio che si ancorano ai nodi della reticolare.

$A_{n_{rcentrali}} = 36 m^2$
$A_{n_{perimetrali}} = 18 m^2$
$A_{n_{rangolari}} = 9 m^2$
$\mathbf{A}_{n1,setti} = 81 \ \mathbf{m}^2$
$A_{n2,setti} = 54 m^2$
A_= 27 m ²

$$\begin{split} P_{n,\text{centrali}} &= n \times q_{u} \times A_{n,\text{centrali}} = 4 \times 12,45 \text{ KN/m}^{2} \times 36 \text{ m}^{2} = 1792,8 \text{ KN} \\ P_{n,\text{perimetrali}} &= P_{nodi \text{ centrali}} / 2 = 896,4 \text{ KN} \\ P_{n,\text{rangolari}} &= P_{nodi \text{ perimetrali}} / 2 = 448,2 \text{ KN} \\ P_{n1,\text{setti}} &= (n \times q_{u} \times A_{n1,\text{setti}}) / 4 = 1008,45 \text{ KN} \quad (4 \text{ nodi sul setto}) \\ P_{n2,\text{setti}} &= (n \times q_{u} \times A_{n1,\text{setti}}) / 3 = 896,4 \text{ KN} \quad (3 \text{ nodi sul setto}) \\ P_{n} &= (n \times q_{u} \times A_{n1,\text{setti}}) = 1344,6 \text{ KN} \end{split}$$

Definisco il carico P trovato da applicare ai nodi come forza concentrata con moltiplicatore di peso proprio pari a 0. A questo punto, dalla vista 2D sul piano X-Y con Z=3, seleziono i nodi superiori della reticolare presenti nella vista.

•[Define/ load patter / add new load pattern]

•[Assign / joint loads / forces]

• VERIFICA DI DEFORMABILITA'

Una volta applicati i vincoli interni, la sezione, i vincoli esterni e i carichi, posso far partire l'analisi con il comando *run analysis* e avvio solo il load pattern P (carichi concentrati) non considerando il peso proprio della reticolare. Visualizzo la deformata e i grafici degli sforzi assiali (controllo dal grafico dei momenti che questi siano nulli sulle aste).

visualizzazione della deformata

grafico degli sforzi assiali sulle aste

abbassamento sul piano Y-Z

DIMENSIONAMENTO ASTE COMPRESSE E TESE

Per il dimensionamento dei profili esporto le tabelle da SAP selezionando solo il carico P assegnato ai nodi. Prima di esportare in Excel posso modificare le station dal comando "*output station*" impostando come numero minimo di station il valore 1, in quanto ,se progettata bene, la reticolare avrà sforzi assiali costanti per l'intera lunghezza dell'asta. Esportate le tabelle, è necessario riordinarle ulteriormente:

- Ordino la colonna station in ordine crescente ed elimino ciò che non mi serve.

- Ordino i valori dello sforzo N_d dal più piccolo al più grande in modo da separare le aste compresse da quelle tese.

•[Ctrl + T / analysis results / frame output]

s

•[Assign / frame / output station]

Per semplificare l'assegnazione dei profili dimensionati alle aste posso fare un'approssimazione dividendo in macrogruppi le aste tese e compresse sia per le diagonali **D** che per le aste **O/V** scegliendo la sezione più sollecitata.

			\square	d									
				Momento di	Modulo di	Raggio di							
d x s	Peso ko/m	Sezione di passaggio	Sezione metallica	inerzia J = cm4	resistenza W = cm3	inerzia i = cm	323,9 × 5,9	46,20	765,0	58,90	7.453	460,0	11,20
33.7 x 2.6	2 010	6.380	2 540	3.090	1.840	1.100	323,9 x 7,1	55,60	753,0	70,70	8.869	548,0	11,20
33.7 x 2.9	2.220	6,110	2,810	3,360	1,990	1,090	355,6 x 5,0	43,20	938,0	55,10	8.464	476,0	12,40
33,7 x 3,2	2,420	5,850	3,070	3,600	2,140	1,080	355,6 x 6,3	54,50	924,0	69,10	10.547	593,0	12,40
42.4 x 2.6	2.570	10.90	3.250	6.460	3.050	1.410	355,6 x 8,0	68,30	906,0	87,40	13.201	742,0	12,30
42.4 x 2.9	2.840	10.50	3.600	7.060	3.330	1.400	406,4 x 5,0	49,50	1.234	63,10	12.704	625,0	14,20
42,4 x 3,2	3,110	10,20	3,940	7,620	3,590	1,390	406,4 x 6,3	62,40	1.218	79,20	15.849	780,0	14,10
48.3 x 2.6	2.950	14.60	3,730	9,780	4.050	1.620	406,4 x 7,1	70,10	1.208	89,10	17.756	874,0	14,10
48.3 x 2.9	3.270	14.20	4,140	10.70	4.430	1,610	457,2 x 5,6	62,10	1.562	79,50	20.312	889,0	16,00
48,3 x 3,2	3,590	13,80	4,530	11,60	4,800	1,600	457,2 x 6,3	70,30	1.552	89,20	22.684	992,0	15,90
60.3 x 2.9	4.140	23.30	5.230	21.60	7.160	2.030	457,2 x 8,0	88,20	1.529	113,0	28.484	1.246	15,90
60.3 x 3.2	4.540	22.80	5,740	23.50	7,780	2.020							
60,3 x 3,6	5,070	22,10	6,410	25,90	8,580	2,010	Argomenti correlati						
76.1 x 2.6	4,750	39,50	6,000	40.60	10,70	2,600	Argomenti correlati						
76,1 x 2,9	5,280	38,80	6,670	44,70	11,80	2,590	 Profilati metallici 						
76,1 x 3,2	5,800	38,20	7,330	48,80	12,80	2,580							
76,1 x 3,6	6,490	37,30	8,200	54,00	14,20	2,570							
88,9 x 2,6	5,570	55,00	7.050	65,70	14,80	3,050							
88,9 x 3,2	6,810	53,50	8,620	79.20	17,80	3,030							
88,9 x 3,6	7,630	52,40	9,650	87,90	19,80	3,020							
88,9 x 4,0	8,430	51,40	10,70	96,30	21,70	3,000							
114,3 x 3,6	9,900	90,10	12,50	192,0	33,60	3,920							
114,3 x 4,0	11,00	88,70	13,90	211,0	36,90	3,900							
114,3 x 4,5	12,10	87,10	15,50	234,0	41,00	3,890							
139,7 x 2,9	9,860	141,0	12,50	292,0	41,80	4,840							
139,7 x 3,6	12,20	138,0	15,40	357,0	51,10	4,810							
139,7 x 4,0	13,50	136,0	17,10	393,0	56,20	4,800							
139,7 x 4,5	14,90	134,0	19,10	437,0	62,60	4,780							
168,3 x 3,2	13,10	206,0	16,60	566,0	67,20	5,840							
168,3 x 4,0	16,30	202,0	20,60	697,0	82,80	5,810							
168,3 x 4,5	18,10	199,0	23,20	777,0	92,40	5,790							
168,3 x 5,0	20,10	197,0	25,70	856,0	102,0	5,780							
219,1 x 4,0	21,40	350,0	27,00	1.564	143,0	7,610							
219,1 x 5,0	26,40	343,0	33,60	1.928	176,0	7,570							
219,1 x 5,9	31,00	338,0	39,50	2.247	205,0	7,540							
273,0 x 4,0	26,70	552,0	33,80	3.058	224,0	9,510							
273,0 x 5,6	36,80	538,0	47,00	4.206	308,0	9,460							
273,0 x 6,3	41,60	533,0	52,80	4.696	344,0	9,430							
323.9 x 4.0	31.80	784.0	40.20	5.144	318.0	11.30							

ASSEGNAZIONE PESO PROPRIO DELLA RETICOLARE

Per considerare il peso proprio della reticolare devo assegnare i profili dimensionati alle aste. Considero una media delle sezioni. Definisco la nuova sezione su SAP e l'assegno a tutte le aste. La sezione da assegnare è **323,9 x 5,9 mm.**

•[Define / section properties / frame section / add new property / steel / pipe]

•[Assign / frame / frame section]

Assegnate le sezioni, avvio l'analisi con il peso proprio DEAD. La struttura è in equilibro statico se la somma delle reazione vincolari verticali (cerniere assegnate) e dei carichi verticali, in questo caso il peso proprio, è nulla. Quindi dal comando ''*joints reactions*'' esporto su Excel le reazioni vincolari e sommando le F3 (asse locale verticale) ottengo il valore del peso proprio.

d	A	В	с	D	E	F	G	н	1.1	
	TABLE: Jo	oint Reactions								
2	Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3	
3	Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m	
4	42	DEAD	LinStatic	-18,281	-47,705	66,834	0	0	0	
5	44	DEAD	LinStatic	5,778	-26,509	98,336	0	0	0	
5	50	DEAD	LinStatic	13,695	-50,776	98,69	0	0	0	
7	84	DEAD	LinStatic	-6,396	7,919	40,762	0	0	0	
3	92	DEAD	LinStatic	5,878	-1,971	55,304	0	0	0	
•	98	DFAD	LinStatic	-20,08	36,8	153,088	0	0	0	
0	106	DEAD	LinStatic	18,99	32,715	155,636	0	0	0	
1	333	DEAD	LinStatic	12,864	31,314	156,454	0	0	0	
2	341	DEAD	LinStatic	11,923	-31,221	156,225	0	0	0	
3	347	DEAD	LinStatic	-2,378	-7,451	44,84	0	0	0	
4	355	DEAD	LinStatic	0,551	-0,043	56,533	0	0	0	
5	361	DEAD	LinStatic	-9,474	37,226	58,574	U	U	U	
6	363	DEAD	LinStatic	4,953	30,822	100,89	0	0	0	
7	369	DEAD	LinStatic	7,703	51,508	97,776	0	0	0	
8										
9						1339,942				
0										
1										
2										
3										
4										
25										

A questo punto creo un nuovo load pattern P_p con moltiplicatore di peso proprio 0 e lo aggiungo. Lo devo assegnare ai nodi centrali, perimentrali e angolari in quanto hanno aree di influenza diverse. Imposto la vista X-Y con Z=3 e seleziono i nodi.

•[Define/ load patter / add new load pattern]

•[Assign / joint loads / forces]

```
\begin{split} n_{,\text{centrali}} &= 65 \\ n_{,\text{perimetrali}} &= 36/2 = 18 \\ n_{,\text{angolari}} &= 1 \\ n_{\text{tot}} &= 84 \\ P_{n,\text{centrali}} &= P_{p}/n_{\text{tot}} = 1339,942 \ /84 = 15,95 \ \text{KN/m}^{2} \\ P_{n,\text{perimetrali}} &= P_{n,\text{centrali}}/2 = 7,97 \ \text{KN/m}^{2} \\ P_{n,\text{angolari}} &= P_{n,\text{perimetrali}}/2 = 3,98 \ \text{KN/m}^{2} \end{split}
```


• COMBINAZIONE DI CARICO $\mathbf{P}_{\mathbf{p}}\text{-}\ \mathbf{P}$

Assegnati il peso proprio P_p e il P ai nodi definisco una combinazione di carico per verificare quanto incide il peso proprio sulla struttura.

•[Define / load combination / add new combo]

Mando l'analisi con la combinazione e verifico sulle tabelle esportate nuovamente su Excel se gli sforzi assiali non sono troppo distanti dai valori iniziali. All'incirca l'aumento è del 10 %.

E3		• : :	×	Dimensione	e caratte	re
	А	В	c t	esto.	Intension	
1	TABLE: Ele	ement For	es - Frame	25		_
2	Frame	Station	OutputCa	se Case	Туре	р
3	1385	0	COMB1	Combi	nation	-4015,357
4	1419	0	COMB1	Combi	nation	-3835,914
5	335	0	COMB1	Combi	nation	-3569,357
6	369	0	COMB1	Combi	nation	-3472,653
7	1512	0	COMB1	Combi	nation	-2693,828
8	114	0	COMB1	Combi	nation	-2029,296
9	1327	0	COMB1	Combi	nation	-2000,191
10	1361	0	COMB1	Combi	nation	-1901,484
11	1396	0	COMB1	Combi	nation	-1835,741
12	1414	0	COMB1	Combi	nation	-1815,2
13	346	0	COMB1	Combi	nation	-1809,957
14	364	0	COMB1	Combi	nation	-1747,954
15	137	0	COMB1	Combi	nation	-1422,251
16	1391	0	COMB1	Combi	nation	-1379,611
17	462	0	COMB1	Combi	nation	-1338,598
18	480	0	COMB1	Combi	nation	-1334,108
19	1573	0	COMB1	Combi	nation	-1283,423
20	394	0	COMB1	Combi	nation	-1280,951
21	393	0	COMB1	Combi	nation	-1260,591
22	427	0	COMB1	Combi	nation	-1243,003
23	311	0	COMB1	Combi	nation	-1233,397
24	428	0	COMB1	Combi	nation	-1213,624
25	1433	0	COMB1	Combi	nation	-1209,522
	<	Elemer	nt Forces -	Frames	Progr	am Control

F3		<u> </u>	$\times \sqrt{f_x}$								
	А	в	с	D	E						
1	TABLE: Ele	ement Ford	es - Frames								
2	Frame	Station	OutputCase	CaseType	Р						
3	1385	0	Р	LinStatic	-3903,253						
4	1419	0	Р	LinStatic	-3722,512						
5	335	0	Р	LinStatic	-3460,835						
6	369	0	P	LinStatic	-3362,781						
7	1512	0	Р	LinStatic	-2632,924						
8	114	0	Р	LinStatic	-1969,684						
9	1327	0	P	LinStatic	-1945,407						
10	1361	0	Р	LinStatic	-1846,179						
11	1396	0	Р	LinStatic	-1782,454						
12	1414	0	Р	LinStatic	-1763,569						
13	346	0	P	LinStatic	-1758,768						
14	364	0	Р	LinStatic	-1698,164						
15	137	0	Р	LinStatic	-1388,888						
16	1391	0	Р	LinStatic	-1326,828						
17	462	0	P	LinStatic	-1315,508						
18	480	0	P	LinStatic	-1310,997						
19	394	0	P	LinStatic	-1237,56						
20	1573	0	Р	LinStatic	-1231,838						
21	393	0	P	LinStatic	-1209,981						
22	311	0	Р	LinStatic	-1202,794						
23	427	0	Р	LinStatic	-1192,39						
24	428	0	Р	LinStatic	-1170,88						
25	1433	0	Р	LinStatic	-1157,771						
	Element Forces - Frames Program Control										

Sforzi assiali dalla COMBO1

Sforzi assiali del Carico P

• VERIFICA DI DEFORMABILITA'

Devo verificare di quanto si abbassi la reticolare e per essere soddisfatta l'abbassamento maggiore non deve superare un 1/200 della distanza maggiore tra gli appoggi. Per verificare la deformabilità devo assegnare il carico allo stato limite ultimo ed esportare gli abbassamenti. Prendo lo spostamento maggiore e verifico che sia minore di L/200, dove L è la distanza massima. Mi creo il carico d'esercizio, lo distribuisco ai nodi in base alla loro area di influenza e mando l'analisi.

$q_{2} = 2,00 \text{ KN/m}^{2} \text{ 1} + 4,57 \text{ KN/m}^{2} \text{ 0,7} + 2,00 \text{ KN/m}^{2} \text{ 0,7} = 6,60 \text{ KN/m}^{2}$

•[Define/ load patter / add new load pattern]

•[Assign / joint loads / forces]

Dalle tabelle risulta che il valore massimo di abbassamento è di 3,6 cm che soddisfa la verifica di deformabilità in quanto L/200= 23000 cm/200= 11,5 cm

abbassamento sul piano Y-Z