ESERCITAZIONE 2 PARTE 2

Verifica del telaio su SAP con carico neve, vento e sisma

Arianna Venettoni

La seconda parte dell'esercitazione consiste nel verificare e ridimensionare il telaio precedentemente analizzato nelle tre tecnologie.

La prima parte dell'esercitazione è uguale per tutte e tre le tecnologie, cambiano soltanto i valori dei carichi da assegnare e i passi strutturali.

Per prima cosa è stato costruito il modello di ciascun telaio su SAP.

- Stabiliamo la griglia iniziale in base alle misure del telaio, disegnato il primo piano e ricopiato per tre volte in modo da avere quattro piani
- Assegniamo il vincolo incastro a tutti i joint del piano terra.
- Definiamo le sezioni progettate nella prima parte dell'esercitazione per travi, mensole e pilastri e assegnato ciascuna all'elemento corrispondente.

Per completare questo passo quando si modella il telaio in legno è necessario definire anche il materiale, che non è presente di default in SAP; per completare questo passaggio scelgo "Define/Material" e spunto select advanced properties. Clicco su "Add new material", scelgo "User" e "Other" e seleziono OK. Nella finestra successiva scelgo il nome del nuovo materiale e l'opzione "Orthotropic". Cliccando poi su Show properties si aprirà una tabella dove si dovranno inserire alcuni valori del tipo di legno scelto, che si possono reperire consultando le tabelle online.

- A questo punto definiamo un load pattern per ogni carico (q_s , q_p e q_a) e assegnato i carichi distribuito alle travi principali assegnandogli il rispettivo valore.
- Definiamo anche una load combination (chiamata Qtot) che comprendesse i tre valori di q moltiplicati per il relativo γ.
- Assegniamo infine un costraint = diaphragm su asse z a tutti i joint di un piano. Questo passo è molto importante perché in questo modo si simula il nodo rigido, ovvero si impone ai pilastri e alle travi di ruotare senza avere però una rotazione relativa, ovvero in modo che l'angolo tra i due elementi rimanga di 90°. È importante anche avere un diaphragm diverso per ogni piano, perché altrimenti tutti i piani sarebbero vincolati a ruotare allo stesso modo.

A questo facciamo partire le analisi eliminando l'analisi "MODAL" ed estraiamo le tabelle, scegliendo come caso di carico la combinazione Qtot definita in precedenza.

Esportiamo le tabelle su Excel e le abbiamo ordinate, individuando poi il telaio più sollecitato aiutandoci con i labels delle travi.

Nel caso del CLS ARMATO, i telai più sollecitati sono due, con gli stessi valori: 31-32 con il pilastro 20 e 36-37 con pilastro 21.

Nel caso del LEGNO la trave è la numero 379, la mensola la 32 e il pilastro il 20.

Nel caso dell'ACCIAIO la trave 12 è la più sollecitata, la mensola 71 e il pilastro 53.

A questo punto prendiamo il valore del momento M3 relativo alle travi e alle mensole più sollecitate e il valore dello sforzo assiale P del pilastro più compresso e li sostituiamo sotto le rispettive voci nei fogli Excel

usati in precedenza. In questo modo è possibile dimensionare gli elementi utilizzando il nuovo momento effettivo.

Il passo successivo è quello di sostituire le vecchie sezioni con quelle nuove, per poi aggiungere i carichi neve, vento e sisma. Anche in questo caso il procedimento per le tre tecnologie è lo stesso, cambiano solo i valori che vengono inseriti.

NEVE

- Definiamo il load pattern Qn con multiplier 0.
- Definiamo una nuova combinazione di carico che comprenda la neve e i carichi aggiunti in precedenza (Qtot+Neve); inseriamo uno Scale Factor di 1,5 come i carichi accidentali.
- Assegniamo alle travi principali un carico distribuito pari a 0,5 KN/m² moltiplicato per l'area d'influenza delle travi
 - \rightarrow 0,5 KN/m² · 6 m = 3 KN.
- Facciamo partire l'analisi selezionando come caso di carico la nuova combinazione ed esportiamo la tabella su Excel.
- Individuiamo il telaio più sollecitato

CALCESTRUZZO ARMATO

Mensola

TABLE: El	TABLE: Element Forces - Frames											
Frame	OutputCase	P	M2	M3								
380	Qtot + Neve	0	0	-132,3716								
385	Qtot + Neve	0	0	-132,3716								
275	Obst Mans	^	^	115 2101								

Trave

390	Qtot + Neve	0	0	-82,3824
379	Qtot + Neve	0	0	-81,5892
384	Qtot + Neve	0	0	-81,5892

Pilastro

Frame	e OutputCase P		M2	M3	
20	Qtot + Neve	-639,044	-0,0112	3,3813	
21	Qtot + Neve	-639,044	0,0112	3,3813	

LEGNO

Mensola e trave

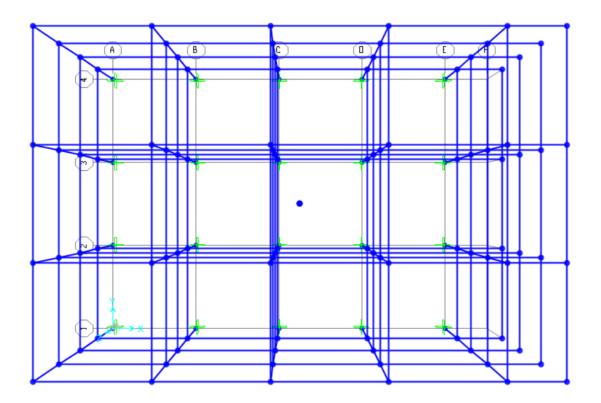
TABLE: Ele	ement Forc	es - Frames			
Frame	Station	OutputCase	Р	M2	М3
380	0	Q tot+ neve	0	0	-71,6742
385	0	Q tot+ neve	0	0	-71,6742
375	0	Q tot+ neve	0	0	-69,8361
390	0	Q tot+ neve	0	0	-69,8361
379	6	Q tot+ neve	0	0	-61,2025
384	6	Q tot+ neve	0	0	-61,2025
Frame	Station	OutputCase	Р	M2	М3
20	0	Q tot+ neve	-283,701	-0,0062	-1,2679
21	0	Q tot+ neve	-283,701	0,0062	-1,2679

ACCIAIO

Mensola

TABLE: Element Forces - Frames										
Frame	Station	OutputCase	Р	V2	V3	T	M2	M3	FrameElem	
1	6	Q tot+neve	0	0,311	-5,819E-20	-5,863E-11	9,129E-19	-0,3118	1-1	
187	0	Q tot+neve	0	-62,859	0	0,0017	0	-127,0721	187-1	

Trave


TABLE: Element Forces - Frames										
Frame	Station	OutputCase	Р	V2	V3	T	M2	M3	FrameElem	
1	6	Q tot+neve	0	0,311	-5,819E-20	-5,863E-11	9,129E-19	-0,3118	1-1	
186	8	Q tot+neve	0	66,427	0	2,705E-07	0	-105,0094	186-1	

Pilastro

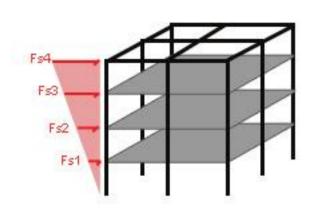
TABLE: El	TABLE: Element Forces - Frames											
Frame	Station	OutputCase	P	V2	V3	T	M2	M3	FrameElem			
53	3	Q tot+neve	-414,896	3,328	0,0008214	-2,511E-18	-0,0008145	1,4898	53-1			
58	3	Q tot+neve	-414,896	3,328	-0,0008214	-2,511E-18	0,0008145	1,4898	58-1			

SISMA

- Per applicare le forze relative al sisma è necessario individuare il centro di massa di ogni piano. Nel nostro caso i piani sono tutti uguali, quindi basta individuarne uno, tracciarvi un punto e copiarlo in corrispondenza degli altri solai.
- A questo punto assegniamo al joint lo stesso diaphragm degli altri sullo stesso piano, di modo che vi appartenga a tutti gli effetti

- Definiamo un load pattern per ogni forza che andremo ad applicare al punto; le forze sono tante quanti i solai fuori terra. La normativa imporrebbe di analizzare due situazioni diverse con due direzioni di forza perpendicolari; dal momento però che il telaio è molto regolare e sappiamo che tutti i carichi agiscono nella stessa direzione (sulle travi principali), possiamo già dedurre che la situazione più sfavorevole sarà quella lungo x, e dunque applicare solo questa.
 - Avremo quindi 4 pattern: Sisma X₃, Sisma X₆, Sisma X₉, Sisma X₁₂.
- Calcoliamo i carichi effettivi del sisma ad ogni piano.

Fs (forza sismica) = $c \cdot W$


Dove:

c = "frazione" dell'accelerazione di gravità che dipende dalla zona -> 0,2÷0,3

$$W = (P + 20\% \text{ Neve} + 30\% q_a)$$

$$P = q_s + q_p$$

La forza si ripartisce in forma triangolare, con

$$Fi = Fs \cdot \frac{ziWi}{\sum_{i=1}^{n} ziWi}$$

Quindi, con le semplificazioni dovute ai piani di altezza regolare e costante e all'ipotesi che i carichi siano uguali:

$$F1 = Fs/10$$

$$F2 = 2Fs/10$$

$$F3 = 3Fs/10$$

$$F4 = 4Fs/10$$

- Assegniamo questi carichi sotto forma di Joint/Forces lungo X ai centri di massa precedentemente individuati.

- Definiamo una nuova combinazione di carico che comprenda i carichi verticali di sempre con l'aggiunta delle quattro forze lungo X (scale factor = 1).
- Come prima, facciamo partire l'analisi, estraiamo le tabelle e individuiamo i telaio più sollecitati con l'aiuto di Excel.

CALCESTRUZZO ARMATO

Mensola e Trave

TABLE: Ele	TABLE: Element Forces - Frames												
Frame	Station	OutputCase	Р	V2	V3	M2	M3	ElemStation					
380	0	Qtot	0	-63,711	0	0	-112,1216	0					
27	0,5	Qtot + SISMA X	0	-49,128	0	0	-68,3197	0,5					
42	0,5	Qtot	0	-49,128	0	0	-68,3197	0,5					
42	0,5	Qtot + SISMA X	0	-49,128	0	0	-68,3197	0,5					
379	6	Qtot + SISMA X	0	53,185	0	0	-66,0472	6					

Pilastro

TABLE: Ele	TABLE: Element Forces - Frames											
Frame	Station	OutputCase	P	V2	V3	M2	M3	ElemStation				
20	0	Qtot + SISMA X	-611,237	-9,06	-0,011	-0,0112	3,5397	0				
21	0	Qtot + SISMA X	-611,237	-9,06	0,011	0,0112	3,5397	0				

LEGNO

Mensola

TABLE: Ele	TABLE: Element Forces - Frames											
Frame	Station	OutputCase	P	M2	М3	FrameElem	ElemStation					
32	0	Q tot+ sisma	0	0	-51,4286	32-1	0					
380	0	Qtot	0	0	-51,4242	380-1	0					
380	0	Q tot+ sisma	0	0	-51,4242	380-1	0					
205	_	A	_	_	E4 4040	205 4	_					

Trave

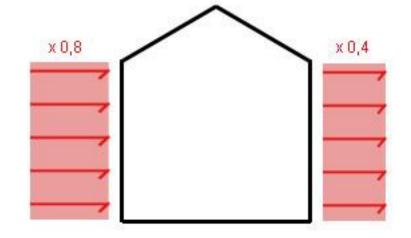
					-
42	0	Q tot+ sisma	0	0	-49,5816 4
379	6	Q tot+ sisma	0	0	-42,8095
384	6	Q tot+ sisma	0	0	-42,8095 3

Pilastro

TABLE: Ele	TABLE: Element Forces - Frames											
Frame	Station	OutputCase	Р	M2	М3	FrameElem	ElemStatio					
20	0	Q tot+ sisma	-255,674	-0,0062	-1,115	20-1						
21	0	Q tot+ sisma	-255,674	0,0062	-1,115	21-1						

ACCIAIO

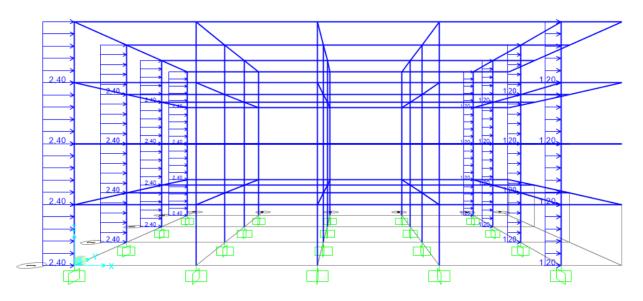
Mensola


TABLE: Element Forces - Frames											
Frame	Station	OutputCase	Р	M2	М3	FrameElem	ElemStation				
129	0	Q tot+ sisma	0	0	-91,0738	129-1	0				
120	1	O tot Leiema	Ω	Λ	01 N720	120 1	Λ				

Pilastro

TABLE: Element Forces - Frames									
Frame	Station	OutputCase	P	M2	M3				
53	3	Q tot+ sisma	-377,644	-0,0008145	1,6614				

VENTO


- Semplifichiamo i calcoli che richiederebbe la normativa stabilendo un carico di 0,5 KN/m² e moltiplicandolo per i coefficienti in figura.
- Definiamo un load pattern "Vento su X"; anche in questo caso, da normativa dovremmo verificare due situazioni perpendicolari, ma per lo stesso motivo esamineremo solo X.
- Assegniamo come in figura due carichi alle file di pilastri, uno per

la parete sopravento e una per quella sottovento. Il loro valore sarà pari a :

 $0.8 \cdot 0.5 \text{ KN/m}^2 \cdot 6 \text{m}$ (Area di influenza) = 1,2 KN/m

 $0.4 \cdot 0.5 \text{ KN/m}^2 \cdot 6 \text{m}$ (Area di influenza) = 2.4 KN/m

- Definiamo una nuova combinazione che comprenda le forze verticali e il vento.
- Mandiamo l'analisi ed analizziamo i risultati su Excel.

CALCESTRUZZO ARMATO

Mensola

TABLE: Ele	TABLE: Element Forces - Frames										
Frame	Station	OutputCase	P	M2	M3	ElemStation					
380	0	Qtot + VentoX	0	0	-112,1216	0					
264	0	Qtot + VentoX	0	0	-112,0977	0					
269	0	Qtot + VentoX	0	0	-112,0977	0					

Trave

327	0,5	Qtot + VentoX	0	0	-82,4192
263	6	Qtot + VentoX	0	0	-71,7415
268	6	Qtot + VentoX	0	0	-71,7415
258	6	Qtot + VentoX	0	0	-71.1197

Pilastro

TABLE: Ele	TABLE: Element Forces - Frames										
Frame	Station	OutputCase	P	M2	M3	ElemStation					
20	0	Qtot + VentoX	-621,086	-0,0112	33,2612	0					
21	0	Qtot + VentoX	-621,086	0,0112	33,2612	0					

LEGNO

Mensola e Trave

Frame	Station	Station OutputCase		M2	М3	
31	6	Q tot + vento	0	0	-60,2023	
273	6	Q tot + vento	0	0	-52,9756	
32	0	Qtot	0	0	-51,4286	

Pilastro

Frame	Station	OutputCase	P	M2	M3	ElemStation
20	0	Q tot + vento	-269,062	-0,0062	17,8139	0
21	0	Q tot + vento	-269,062	0,0062	17,8139	0

ACCIAIO

Mensola

TABLE: Ele	ement For	ces - Frames				- 11- Vi	<u> </u>		
Frame	Station	OutputCase	P	V2	V3	T	M2	M3	FrameElem
129	0	Q tot+ vento	0	-44,859	0	0,0017	0	-91,0738	129-1

Trave

Frame	Station	OutputCase	Р	V2	V3	T	M2	M3	FrameElem
1	6	Q tot+ vento	0	0,311	-1,358E-18	-5,863E-11	6,109E-18	-0,3118	1-1
70	8	Q tot+ vento	0	48,966	0	1,247E-07	0	-80,5981	70-1

Pilastro

TABLE: ER	lement Forces - Frames											
Frame	Station	OutputCase	P	V2	V3	T	M2	M3	FrameElem			
1	6	Q tot+ vento	0	0,311	-1,358E-18	-5,863E-11	6,109E-18	-0,3118	1-1			
53	3	Q tot+ vento	-383,392	-5,946	0,0008214	-3,516E-18	-0,0008145	17,261	53-1			

Individuati i valori più alti e i relativi travi, mensole e pilastri, si procede ad un ulteriore dimensionamento utilizzando lo stesso metodo precedente. Le sezioni risultanti sono:

CALCESTRUZZO ARMATO

Mensola: $M = -137,37 \text{ KNm} \rightarrow \text{SEZIONE} : 40 \times 50 \text{ cm}$

Trave: $M = -81,58 \text{ KNm} \rightarrow \text{SEZIONE} : 30 x 45 \text{ cm}$

Pilastro: N= -621 KN → SEZIONE : 30 x 20 cm

<u>LEGNO</u>

Mensola: $M = -71,67 \text{ KNm} \rightarrow \text{SEZIONE} : 30 \times 40 \text{ cm}$

Trave: $M = -61,20 \text{ KNm} \rightarrow \text{SEZIONE} : 30 \times 40 \text{ cm}$

Pilastro: N= -621 KN → SEZIONE : 30 x 20 cm

ACCIAIO

Mensola: M = 127,07 KNm \rightarrow SEZIONE : IPE 330

Trave: $M = -105 \text{ KNm} \rightarrow \text{SEZIONE}$: IPE 300

Pilastro: N= -403,6 KN → SEZIONE : HEA100

L'ultimo passo è quello di verificare le sezioni dei pilastri, in quanto soggetti a pressoflessione e non a flessione semplice come nelle tabelle.

Scegliamo per ogni tecnologia il pilastro con il massimo sforzo normale di segno concorde al massimo momento. Per ogni tecnologia c'è un metodo diverso.

CALCESTRUZZO ARMATO

Dati

- Pilastro con N= -428,26 KN e M= -22,235
- Sezione b= 30 cm e H= 20 cm
- h/6 = 20/6 = 3.3 cm

Determiniamo l'eccentricità e= M/N= 0,045 m = 4,5 cm

e > h/6 → formula monomia

u = h/2 - e = 5.5 cm

 $\sigma_{\text{max}} = 2\text{N}/3\text{u}\cdot\text{b} = 19,68 \text{ MPa} > f_{\text{cd}} = 14,2 \text{ MPa}$ NON VERIFICATO

Scegliamo allora una sezione quadrata di 30 x 30 cm.

e= 4,5 cm < h/6 = 5 cm→ consideriamo la sezione tutta compressa; utilizziamo Navier.

 $\sigma_{max} = N/A + M/W$

 $W = I^3/6 = 4500 \text{ cm}^3$

 σ_{max} = 5,5415 MPa < 14,2 MPa VERIFICATO

LEGNO

Dati

- Pilastro con N= -223,3 KN e M= -19,5
- Sezione b= H = 20 cm
- Legno GL24H : f_{fk} = f_{ck}= 24 MPa

 $f_{fd} = f_{cd} = (kmod \cdot fk)/\gamma m = 9,93 MPa$

 $\sigma_c = N/A = 5.58 MPa$

 $\sigma_f = M/W = 0.14 MPa$

 $\sigma_c / f_{cd} + \sigma_f / f_{fd} = 0,575 < 1$ VERIFICATO

ACCIAIO

Dati

- Pilastro HEA 100
- N = 404 KN
- M= 3,63 KNm

 σ max= N/A + M/W = (-404000 N/0,002124 m²) + (-3,63 Knm/0,00007276 m³)=240.097.000 N/m^2 → 240 Mpa

240 Mpa > 223 Mpa NON VERIFICATO

Andiamo ad impiegare una HEA più grande → HEA120

								2000	enti di erzia Moduli di resistenza			Raggi di inerzia	
sigla HEA	b mm	h mm	a mm	e mm	r mm	Peso kg/m	Sezione cm2	Jx cm4	Jy cm4	Wx cm3	Wy cm3	ix cm	iy cm
100	100	96	5,0	8,0	12	16,7	21,24	349,2	133,8	72,76	26,76	4,06	2,51
120	120	114	5,0	8,0	12	19,9	25,34	606,2	230,9	106,3	38,48	4,89	3,02

 σ max= N/A + M/W=(-404.000 N/0,002534 m^2) + (-3,63 Kn*m/0,0001063 m^3)=193.580.363 N/m^2 → 194 Mpa

193 Mpa < 223 Mpa VERIFICATO