
LEGNO

1. DIMENSIONAMENTO TRAVE

ANALISI DEI CARICHI

CARICHI STRUTTURALI Qs

• TRAVETTI IN LEGNO LAMELLARE:

SEZIONE: 6 CM X 15 CM PESO PROPRIO: 450 KG\M³

VOLUME: $0.15 \times 0.06 \times 1 = 0.009 \text{ M}^3 \times 1/0.5 = 0.018 \text{ M}^3/\text{ M}^2$

PESO AL M^{2} : 4.5 x 0.018 = 0.081 KN\ M^{2}

• TAVOLATO IN LEGNO ABETE:

SPESSORE: 6 CM

PESO PROPRIO: $600 \text{ KG} \text{M}^3$ VOLUME: $0.06 \text{ X} 1 \text{ X} 1 = 0.06 \text{ M}^3$ PESO AL M^{2:} $6 \times 0.06 = 0.36 \text{ KN} \text{M}^2$

 $Q_S = (0.36) 2 + 0.081 = 0.522 \text{ KN} M^2$

CARICHI PERMANENTE Qp

MASSETTO

SPESSORE: 8 CM

PESO PROPRIO: 2100 KG\M³ VOLUME: 0.08 X 1 X 1 = 0.08 M³ PESO AL M²: 21 x 0.08 = 1.68 KN\M²

ISOLANTE

SPESSORE: 5 CM

PESO PROPRIO: 30 KG\M³ VOLUME: 0.05 X 1 X 1 = 0.05 M³

PESO AL M^2 : 0.03 x 0.05 = 0.015 KN\ M^2

• ALLETTAMENTO

SPESSORE: 2 CM

PESO PROPRIO: 2000 KG\M³ VOLUME: 0.02 X 1 X 1 = 0.02 M³ PESO AL M^{2:} 20 x 0.02 = 0.4 KN\M²

• PAVIMENTAZIONE

SPESSORE: 1.8 CM

PESO PROPRIO: 750 KG\M³

VOLUME: $0.018 \times 1 \times 1 = 0.018 \text{ M}^3$ PESO AL M²: $6 \times 0.018 = 0.135 \text{ KN} \text{M}^2$

• aggiungendo il contributo di tramezzi (1 KN/m2) e impianti (0,5 KN/m2).

 $Q_p = 1.68 + 0.015 + 0.4 + 0.135 + 1.5 = 3.73 \text{ KN} M^2$

CARICHI ACCIDENTALE **Q**a

IL carico accidentale dipende dalla destinazione d'uso dell'edificio: in questo caso si considera un **Uffici non** aperti al publico.

$q_a = 2 KN M^2$

	Α	В	С	D	E	F	G
1	interasse (m)	$q_s (KN/m^2)$	$q_p (KN/m^2)$	$q_a (KN/m^2)$	q_u (KN/m)	luce (m)	M _{max} (KN*m)
2							
3	5.00	0.52	3.73	2.00	46.37	6.00	208.66
4	6.00	0.52	3.73	2.00	55.64	6.00	250.39
5							

$$q_{tot} = {}_{Y}q_{S} + {}_{Y}q_{p} + {}_{Y}q_{a} = (1.3 \, q_{S} + 1.5 \, q_{p} + 1.5 \, q_{a}) \, KN \backslash M^{2}$$

$$q_{u5} = {}_{Y}q_{s} + {}_{Y}q_{p} + {}_{Y}q_{a} = (1.3 \ q_{s} + 1.5 \ q_{p} + 1.5 \ q_{a}) \ i = (1.3 \ x \ 0.52 + 1.5 \ x \ 3.73 + 1.5 \ x \ 2)5 = 46.37 \ KN\M$$

$$Q_{u6} = _{Y}Q_{s} + _{Y}Q_{p} + _{Y}Q_{a} = (1.3 Q_{s} + 1.5 Q_{p} + 1.5 Q_{a})$$
 $i = (1.3 \times 0.52 + 1.5 \times 3.73 + 1.5 \times 2)6 = 55.64 KN\M$

A questo punto bisogna determinare il momento massimo agente sulla trave. A tale scopo la tabella Excel ha bisogno di conoscere la luce della trave; si ricorda che nell'ipotesi del modello più semplice di trave doppiamente appoggiata, il momento massimo si trova nella sezione di mezzeria e vale:

$$Mmax = \frac{qul^2}{8}$$

 $M_{max(5)} = 208.66 \text{ KN}M$ $M_{max(6)} = 250.39 \text{ KN}M$

La tensione di progetto viene calcolata, secondo la norma, mediante la relazione:

$$Fd = \frac{Kmod Fm, k}{Ym}$$

 f_m , che è la resistenza caratteristica del legno, è scelta 24 N/MM²

 k_{mod} è un coefficiente diminutivo dei valori di resistenza del materiale, e delle condizioni di umidità in cui la struttura si troverà ad operare.

nel nostro caso: classe di servizio 1, classe di durata del carico media = 0.80

 γ_m è il coefficiente parziale di sicurezza relativo al material = 1.45

 $F_{d(5)} = 9.93 \text{ N/MM}^2$

 $F_{d(6)} = 9.93 \text{ N/MM}^2$

	Н		J	K	L	M	N	O
1	$f_{m,k}$ (N/mm ²)	k_{mod}	γm	f _d (N/mm ²)	b (cm)	h _{min} (cm)	H (cm)	
2								
3	24.00	0.80	1.45	13.24	40.00	48.62	55.00	
4	24.00	0.80	1.45	13.24	40.00	53.26	55.00	
5								

Rimane ora da inserire nel foglio excel la base $\mathbf{b} = \mathbf{40}$ cm ipotizzata per trovare l'altezza minima della trave di legno.

L'altezza minima viene 53.26 cm quindi arrivo ad un altezza della trave in legno di H = 55 cm.

2. DIMENSIONAMENTO MENSOLA

ANALISI DEI CARICHI

CARICHI STRUTTURALI $q_s = 0.522 \text{ KN} \text{M}^2$

CARICHI PERMANENTE $q_p = 3.73 \text{ KN/M}^2$

CARICHI ACCIDENTALE $q_a = 2 \text{ KN/M}^2$

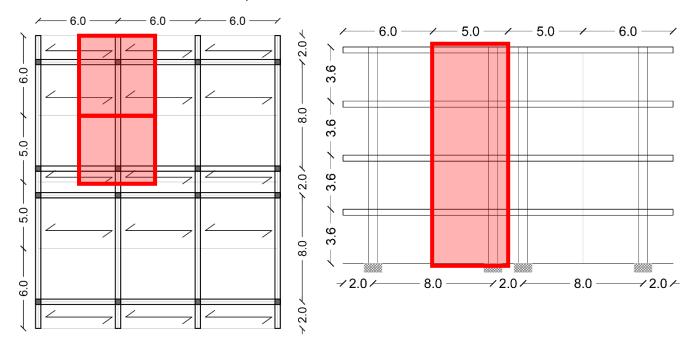
Ora andiamo ad inserire i dati nella tabella excel inserendo i qs, qp, qa e mi trovo il qu, Inserisco la il valore della luce della trave per trovare quanto vale il \mathbf{M}_{max} .

	Α	В	С	D	E	F	G	Н	1	J ≜
1	interasse (m)	q _s (kN/mq)	q _p (kN/mq)	q _a (kN/mq)	q _u (kN/m)	luce (m)	M _{max} (kN*m)	f _{m,k} (N/mm ²)	k _{mod}	γm
2										
3	6	0.52	3.73	2.00	55.626	2	111.252	24	0.8	1.45
4										

Ho scelto il legno lamellare. Inserisco la tensione caratteristica a flessione f_{mk} del legno che equivale a **24 MPa**. La normativa mi fornisce la tensione di progetto f_{md} attraverso il coefficiente diminutivo dei valori di resistenza del materiale $k_{mod} = 0.80$ ed il coefficiente parziale di sicurezza $\gamma_m = 1,45$ in base al materiale da me scelto. Trovo il valore della tensione di progetto f_d .

	G	Н	I	J	K	L	M	N	0	P
1	M _{max} (kN*m)	f _{m,k} (N/mm ²)	k _{mod}	γm	f _d c	b (cm)	h _{min} (cm)	H (cm)	E (N/mm ²)	l _x (cm ⁴)
2										
3	111.252	24	8.0	1.45	13.24	40	35.50	55	8000	554583
4										

Fisso la base b della trave per trovare \mathbf{h}_{min} della sezione. Scelgo il valore di \mathbf{H} che deve essere maggiore di \mathbf{h}_{min} .


b = 40 CM, h_{min} = 35.5 CM, **H = 55 CM**

	L	M	N	0	Р	Q	R	S	Т	U	<u></u>
1	b (cm)	h _{min} (cm)	H (cm)	E (N/mm ²)	I _x (cm ⁴)	q _e (kN/m)	v _{max} (cm)	I/v _{max}			
2											
3	40	35.50	55	8000	554583	32	0.14	1408.47	Sì		
4											

3. DIMENSIONAMENTO PILASTRI

AREA DI INFLUENZA

In cui L1 e L2 sono le due luci della pianta

SFORZO NORMALE DI COMPRESSIONE N

Nel secondo gruppo di colonne devono essere inseriti una serie di dati necessari per determinare lo sforzo normale di compressione N, il quale dipende dal carico dovuto al peso proprio delle travi che si poggiano in testa al pilastro, dal carico dovuto al solaio e dal numero di piani dell'edificio analizzato.

ANALISI DEI CARICHI

CARICHI STRUTTURALI Qs = 0.522 KN\M2

CARICHI PERMANENTE $q_p = 3.73 \text{ KN/M2}$

CARICHI ACCIDENTALE **q**a = 2 KN\M2

CARICHI DOVUTO AL PESO PROPRIO DELLE TRAVI PRINCIPALE = $(0.4 \times 0.55) \text{ M}^2 \times 4.5 \text{ KN/M}^3 = \textbf{0.99 KN/M}$ CARICHI DOVUTO AL PESO PROPRIO DELLE TRAVI SECONDARIE = $(0.4 \times 0.55) \text{ M}^2 \times 4.5 \text{ KN/M}^3 = \textbf{0.99 KN/M}$ NUMERO DI PIANI **4**

M6	* ;	× ✓ f	24												~
	Α	В	С	D	Е	F	G	Н		J	K	L	M	N	(^
1	L ₁	L ₂	Area	trave _p	traves	q _{trave}	q _s	q _p	q _a	q _{solaio}	n _{piani}	N	$f_{c0,k}$	k_{mod}	Υ
2	m	m	m ²	kN/m	kN/m	kN	kN/mq	kN/mq	kN/mq	kN		kN	Мра		
3															
4	6.00	6.00	36.00	0.99	0.99	15.44	0.52	3.73	2.00	333.85	4	1397	24.00	0.80	1.
5	6.00	5.00	30.00	0.99	0.99	14.16	0.52	3.73	2.00	278.13	4	1169	24.00	0.80	1.
6	6.00	3.00	18.00	0.99	0.99	11.58	0.52	3.73	2.00	166.88	4	714	24.00	0.80	1.
7	5.00	3.00	15.00	0.99	0.99	10.30	0.52	3.73	2.00	139.07	4	597	24.00	0.80	1.
8															

L'AREA MINIMA NECESSARIA

 f_m , che è la resistenza caratteristica del legno, è scelta 24 N/MM 2

 k_{mod} è un coefficiente diminutivo dei valori di resistenza del materiale, e delle condizioni di umidità in cui la struttura si troverà ad operare.

nel nostro caso: classe di servizio 1, classe di durata del carico media = 0.80

 γ_m è il coefficiente parziale di sicurezza relativo al material = 1.45

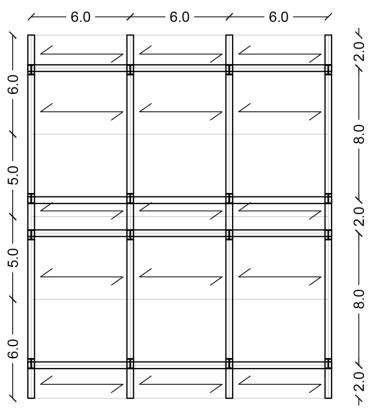
	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	AA	AB
1	Υm	f_{c0d}	A_{min}	E,005	β	I	λ_{max}	ρ_{min}	b _{min}	b	h _{min}	h	A_{design}	I _{design}
2		Мра	cm ²	Мра		m		cm	cm	cm	cm	cm	cm ²	cm ⁴
3														
4	1.45	13.24	1055.2	8800	1.0	3.60	80.95	4.45	15.41	25.00	42.21	45.00	1125	58594
5	1.45	13.24	883.0	8800	1.0	3.60	80.95	4.45	15.41	25.00	35.32	45.00	1125	58594
6	1.45	13.24	539.1	8800	1.0	3.60	80.95	4.45	15.41	20.00	26.96	30.00	600	20000
7	1.45	13.24	451.2	8800	1.0	3.60	80.95	4.45	15.41	20.00	22.56	30.00	600	20000
8														

RAGGIO DI INERZIA MINIMO

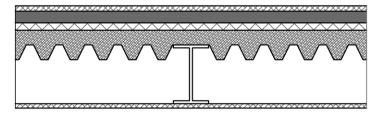
Grazie al raggio di inerzia minima e al fatto che la sezione del pilastro è rettangolare e piena posso trovarmi la base minima della sezione del pilastro.

E= 8800Mpa modulo di elasticità

 β = 1 il pilastro è vincolato a terra tramite un incastro e nel nodo trave pilastro tramite sempre un incastro.


I= 3.6m altezza del pilastro

Con le formule che abbiamo dimostrato in classe il foglio di Excel mi calcola:


 $b_{min} = \rho_{min} 2\sqrt{3}=15.41$ cm ingenierizzo a b = 25 cm

 $h_{min} = b/A_{min} = 42.21 \text{ cm}$ ingenierizzo a h = 50 cm

ACCIAIO

1. DIMENSIONAMENTO TRAVE ANALISI DEI CARICHI

pavimentazione 1.8 cm massetto 4 cm isolante 2.5 cm soletta 10 cm

lamiera grecata 0.15 cm

controsoffitto 1.5 cm

CARICHI STRUTTURALI Qs

• TRAVETTI (IPE 200 S235)

PESO PROPRIO: 22.4 Kg/M = 0.224 KN/M3

PESO AL M2: 0.224 KN\M2
• LAMIERA GRECATA IN ACCIAIO

SPESSORE: 0.15 CM

PESO PROPRIO: 7860 KG\M3

VOLUME: $0.0015 \times 1 \times 1 = 0.0015 \text{ M}^3$ PESO AL M²: $78.6 \times 0.0015 = 0.1179 \text{ KN} \text{M}^2$

• SOLETTAA IN CLS ALLEGERITO

SPESSORE: 0.025 + 0.05 = 0.075 CM

PESO PROPRIO: 1500 KG\M³

VOLUME: $0.075 \times 1 \times 1 = 0.075 \text{ M}^3$ PESO AL M^{2:} $15 \times 0.075 = 1.125 \text{ KN} \text{M}^2$

 $\mathbf{q}_{s} = 0.224 + 0.1179 + 1.125 = 1.4669 \text{ KN} M^{2}$

CARICHI PERMANENTE **q**p

• ISOLANTE

SPESSORE: 2.5 CM

PESO PROPRIO: 30 KG\M3

VOLUME: $0.025 \times 1 \times 1 = 0.025 \text{ M}^3$

PESO AL M²: 0. 3 x 0.025 = 0.0075 KN M^2

MASSETTO

SPESSORE: 4 CM

PESO PROPRIO: 2100 KG\M³ VOLUME: 0.04 X 1 X 1 = 0.04 M³ PESO AL M²: 21 x 0.04 = 0.84 KN\M²

• PAVIMENTAZIONE

SPESSORE: 1.8 CM

PESO PROPRIO: 750 KG\M³

VOLUME: $0.018 \times 1 \times 1 = 0.018 \text{ M}^3$ PESO AL M²: $6 \times 0.018 = 0.135 \text{ KN} \text{M}^2$

• aggiungendo il contributo di tramezzi (1 KN/m2) e impianti (0,5 KN/m2).

 $Q_p = 0.0075 + 0.84 + 0.135 + 1.5 = 2.4825 \text{ KN} M^2$

CARICHI ACCIDENTALE **Q**a

IL carico accidentale dipende dalla destinazione d'uso dell'edificio: in questo caso si considera un **Uffici non** aperti al publico.

$q_a = 2 KN M^2$

	Α	В	С	D	Е	F	G
1	interasse (m)	$q_s (KN/m^2)$	$q_p (KN/m^2)$	$q_a (KN/m^2)$	q_u (KN/m)	luce (m)	M _{max} (KN*m)
2							
3	5.00	1.46	2.48	2.00	43.11	6.00	193.99
4	6.00	1.46	2.48	2.00	51.73	6.00	232.79
5							

$$q_{tot} = {}_{Y}q_{s} + {}_{Y}q_{p} + {}_{Y}q_{a} = (1.3 \, q_{s} + 1.5 \, q_{p} + 1.5 \, q_{a}) \, KN M^{2}$$

$$q_{u5} = yq_s + yq_p + yq_a = (1.3 q_s + 1.5 q_p + 1.5 q_a)$$
 $i = (1.3 \times 1.4669 + 1.5 \times 2.4825 + 1.5 \times 2)5 = 46.37$ KN\M

$$q_{u6} = {}_{Y}q_{s} + {}_{Y}q_{p} + {}_{Y}q_{a} = (1.3 \, q_{s} + 1.5 \, q_{p} + 1.5 \, q_{a})$$
 $i = (1.3 \, x \, 1.4669 + 1.5 \, x \, 2.4825 + 1.5 \, x \, 2)6 = 55.64 \, KN\M$

A questo punto bisogna determinare il momento massimo agente sulla trave. A tale scopo la tabella Excel ha bisogno di conoscere la luce della trave; si ricorda che nell'ipotesi del modello più semplice di trave doppiamente appoggiata, il momento massimo si trova nella sezione di mezzeria e vale:

$$Mmax = \frac{qul^2}{8}$$

 $M_{max(5)} = 193.99 \text{ KN}M$ $M_{max(6)} = 232.79 \text{ KN}M$

Ora sceglieamo il valore caratteristico di snervamento per l'acciaio \mathbf{f}_{yk} che mi individua la classe di resistenza del materiale, in questo caso scelgo una resistenza di **275 MPa**.

Mi calcolo così la tensione di progetto f_d (tensione ammissibile) dividendo f_{yk} per un il coefficiente di sicurezza per la resistenza delle membrature e la stabilità, $\gamma_s = 1.05$:

$$f_d = 275/1.05 = 261.90 \text{ N/mm}^2$$

Mi calcolo infine il MODULO DI RESISTENZA A FLESSIONE $W_{x,min}$, per poi andare a scegliere il profilato appropriato sulla tabella dei profili in acciaio.

 $W_{x,min(5)} = M_{max}/f_d = 740.69 \text{ cm}^3$ $W_{x,min(6)} = M_{max}/f_d = 888.82 \text{ cm}^3$

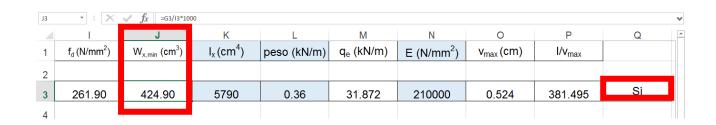
La tabella di calcolo mi ha ora trovato il $W_{x,min}$ cioè il valore minimo che la sezione che sceglierò dovrà avere affinchè nessuna fibra del materiali superi la tensione di progetto.

Nella tabella dei profili metallici scelgo un profilo adatto che abbia un modulo di resistenza a flessione W_x maggiore di quello da me trovato **SCEGLIAMO QUINDI UNA (IPE 360).**

К3	· : × / fx	904					
	E	F	G	Н	I	J	K
1	q_u (KN/m)	luce (m)	M _{max} (KN*m)	$f_{y,k}$ (N/mm ²)	$f_d (N/mm^2)$	$W_{x,min}$ (cm ³)	W _x (cm ³)
2							
3	43.11	6.00	193.99	275.00	261.90	740.69	904.00
4	51.73	6.00	232.79	275.00	261.90	888.82	904.00
5							

2. DIMENSIONAMENTO MENSOLA ANALISI DEI CARICHI

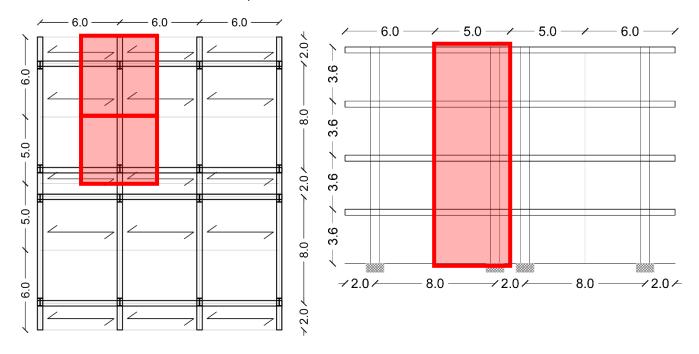
CARICHI STRUTTURALI Qs = 1.4669 KN\M2


CARICHI PERMANENTE qp = 2.4825 KN\M2

CARICHI ACCIDENTALE $q_a = 2 \text{ KN/M}^2$

Ora andiamo ad inserire i dati nella tabella excel inserendo i qs, qp, qa e mi trovo il qu, Inserisco la il valore della luce della trave per trovare quanto vale il \mathbf{M}_{max} .

	Α	В	С	D	E	F	G	Н	1
1	interasse (m)	q _s (kN/mq)	q _p (kN/mq)	q _a (kN/mq)	$q_u(kN/m)$	luce (m)	M _{max} (kN*m)	$f_{y,k}$ (N/mm ²)	f _d (N/mm ²)
2									
3	6	0.522	3.73	2.00	55.6416	2	111.2832	275	261.90
4									


Scelgo la classe dell'acciaio strutturale con tensione caratteristica di snervamento f_{yk} = 275 MPa. Così ho trovato la tensione di progetto f_d , in questo modo ricavo il modulo di resistenza minimo rispetto all'asse x, $W_{x,min}$ = 224.9 CM³. Scelgo la sezione della trave IPE (IPE 600) consultando la tabella dei Profilati e scegliendo un profilato con $W_x > W_{x,min}$.

3. DIMENSIONAMENTO PILASTRI

AREA DI INFLUENZA

In cui L1 e L2 sono le due luci della pianta

SFORZO NORMALE DI COMPRESSIONE N

Nel secondo gruppo di colonne devono essere inseriti una serie di dati necessari per determinare lo sforzo normale di compressione N, il quale dipende dal carico dovuto al peso proprio delle travi che si poggiano in testa al pilastro, dal carico dovuto al solaio e dal numero di piani dell'edificio analizzato.

ANALISI DEI CARICHI

CARICHI STRUTTURALI **q**s = 1.4669 KN\M2

CARICHI PERMANENTE $q_p = 2.4825$ KN\M2

CARICHI ACCIDENTALE **q**a = 2 KN\M2

CARICHI DOVUTO AL PESO PROPRIO DELLE TRAVI PRINCIPALE IPE 360 = 57.1 KG\M CARICHI DOVUTO AL PESO PROPRIO DELLE TRAVI SECONDARIE IPE 360 = 57.1 KG\M NUMERO DI PIANI 4

	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	Р	_
1	L ₁	L ₂	Area	trave _p	traves	q _{trave}	q _s	q_p	q _a	q _{solaio}	n _{piani}	N	f _{yk}	Υm	f _{yd}	$\boldsymbol{A}_{\text{min}}$	
2	m	m	m2	kN/m	kN/m	kN	kN/mq	kN/mq	kN/mq	kN		kN	Мра		Мра	cm2	N
3																	
4	6.00	6.00	36.00	0.57	0.57	8.91	1.46	2.48	2.00	310.25	4	1277	275.00	1.05	261.90	48.7	21
5	6.00	5.00	30.00	0.57	0.57	8.17	1.46	2.48	2.00	258.54	4	1067	275.00	1.05	261.90	40.7	21
6	6.00	3.00	18.00	0.57	0.57	6.68	1.46	2.48	2.00	155.12	4	647	275.00	1.05	261.90	24.7	21
7	5.00	3.00	15.00	0.57	0.57	5.94	1.46	2.48	2.00	129.27	4	541	275.00	1.05	261.90	20.7	21
8																	

L'AREA MINIMA NECESSARIA

Avendo trovato il valore dello sforzo normale di compressione posso trovare ora l'area minima affinchè il materiale non entri in crisi.

 f_{yK} è valore caratteristico di snervamento per l'acciaio che mi individua la classe di resistenza del materiale, in questo caso scelgo un acciaio medio (classe Fe 430/s275) di resistenza 275 Nmm².

 γ_m coefficienti di sicurezza per la resistenza delle membrature e la stabilità pari a **1.05**. Con questi coefficienti mi ricavo la tensione ammissibile di progetto a compressione: $f_{yd} = f_{yk} / \gamma_m = 275/1.05) = 261.90$ MPa

Amin= $N/f_{yd}=50.4$ cm²

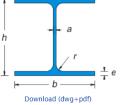
	M	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	AA	AB ≏
1	f _{yk}	Ym	\mathbf{f}_{yd}	A_{\min}	Е	β	- 1	λ*	ρ_{min}	I _{min}	A _{design}	I _{design}	ρ_{min}	λ	profilo	
2	Мра		Мра	cm2	Мра		m		cm	cm4	cm2	cm4	cm			
3																
4	275.00	1.05	261.90	48.7	210000	1.00	3.60	88.96	4.05	798	31.4	1033	5.73	62.83	HEA160	
5	275.00	1.05	261.90	40.7	210000	1.00	3.60	88.96	4.05	667	31.4	1033	5.73	62.83	HEA200	
6	275.00	1.05	261.90	24.7	210000	1.00	3.60	88.96	4.05	405	25.3	606	4.89	73.62	HEA240	
7	275.00	1.05	261.90	20.7	210000	1.00	3.60	88.96	4.05	338	25.3	606	4.89	73.62	HEA241	
8																

RAGGIO DI INERZIA MINIMO AREA DI DESIGN E INERZIA DI DESIGN

Trovo l' **Inerzia minima** per poter cercare il mio profilato sulla tabella non prima di aver trovato dei valori importanti quali la snellezza e il raggio di inerzia.

E= 21000Mpa modulo di elasticità

 β = 1 il pilastro è vincolato a terra tramite un incastro e nel nodo trave pilastro tramite sempre un incastro.

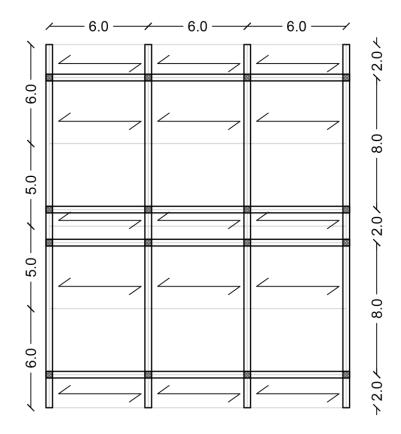

I= 3.6m altezza del pilastro

Con le formule che abbiamo dimostrato in classe il foglio di Excel mi calcola:

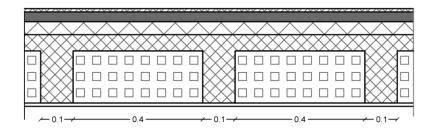
 $\lambda_{max} = \prod VE/fcd$ $\rho_{min} = 10 / \lambda max$ $I_{min} = A \times \rho_{min} 2$

Una volta che ho l'inerzia minima vado sulle tabelle dei profilati HEA e scelgo il profilato che abbia un Inerzia maggiore dell' inerzia minima.

⊕ 🔄 ☆ :


								Momenti	di inerzia	Moduli di	resistenza	Raggi d	i inerzia
sigla	b	h	а	е	r	Peso	Sezione	Jx	Jy	Wx	Wy	ix	iy
HEA	mm	mm	mm	mm	mm	kg/m	cm2	cm4	cm4	cm3	cm3	cm	cm
100	100	96	5.0	8.0	12	16.7	21,24	349,2	133,8	72.76	26,76	4.06	2,51
120	120	114	5,0	8,0	12	19,9	25,34	606,2	230,9	106,3	38,48	4,89	3,02
140	140	133	5,5	8,5	12	24,7	31,42	1.033	389,3	155,4	55,62	5,73	3,52
160	160	152	6,0	9,0	15	30,4	38,77	1.673	615,6	220,1	76,95	6,57	3,98
180	180	171	6,0	9,5	15	35,5	45,25	2.510	924,6	293,6	102,7	7,45	4,52
200	200	190	6,5	10,0	18	42,3	53,83	3.692	1.326	388,6	133.6	8,28	4,98
220	220	210	7,0	11,0	18	50,5	64,34	5.410	1.955	515,2	177,7	9,17	5,51
240	240	230	7,5	12,0	21	60,3	76,84	7.763	2.769	675,1	230,7	10,05	6,00
260	260	250	7,5	12,5	24	68,2	86,82	10.450	3.668	836,4	282,1 _{Act}	10,97	6,50
280	280	270	8,0	13,0	24	76,4	97,26	13.670	4.763	1.013	340,2 Go to	Se 11,86 to	activ 73,00 /Vir

Una volta scelto il profilato ho l'area di design e il momento di inerzia di design.


 $A_{design} = 31.42 \text{ cm}^2$ $I_{desig} = 1033 \text{ cm}^4$ $\rho_{design} = 3.52 \text{ cm}$

 A_{design} = 31.42 cm² I_{desig} =1033cm⁴ ρ_{design} =3.52 cm

CALCESTRUZZO ARMATO

4. DIMENSIONAMENTO TRAVE ANALISI DEI CARICHI

pavimento 1 cm massetto 3 cm isolante 4 cm soletta 5 cm

pignatte 16 cm

intonanco 1 cm

CARICHI STRUTTURALI **q**s

• TRAVETTI IN CLS

SEZIONE: 10 CM X 16 CM PESO PROPRIO: 2500 KG\M³

VOLUME: $0.1 \times 0.16 \times 1 = 0.016 \text{ M}^3 \times 1/0.5 = 0.032 \text{ M}^3/\text{ M}^2$

PESO AL M^2 : 25 x 0.032 = 0.8 KN\ M^2

• SOLETTA

SPESSORE: 5 CM

PESO PROPRIO: 2500 KG\M³ VOLUME: 0.05 X 1 X 1 = 0.05 M³ PESO AL M²: 25 x 0.05 = 1.25 KN\M²

• PIGNATTE

DIMENSIONI: 16 CM x 40 CM x 20 CM

PESO PROPRIO: 5.5 KN\ M²

VOLUME: $0.4 \times 0.2 \times 0.16 = 0.0128 \text{ M}^3$

PESO AL M²: $8 \times 0.0128 \times 5.5 = 0.5632 \text{ KN/M2}$ (sono 8 pignatte al m2)

$Q_S = 1.25 + 0.5632 + 0.8 = 2.6132 \text{ KN} M^2$

CARICHI PERMANENTE **q**p

PAVIMENTO

SPESSORE: 1 CM

PESO PROPRIO: 720 KG\M³ VOLUME: 0.01 X 1 X 1 = 0.08 M³ PESO AL M^{2:} 0.01 x 7.2 = 0.072 KN\M²

MASSETTO

SPESSORE: 3 CM

PESO PROPRIO: 2000 KG\M³ VOLUME: 0.03 X 1 X 1 = 0.03 M³ PESO AL M^{2:} 0.03 x 20 = 0.6 KN\M²

• ISOLANTE

SPESSORE: 4 CM

PESO PROPRIO: 20 KG\M³ VOLUME: 0.04 X 1 X 1 = 0.04 M³ PESO AL M^{2:} 0.04 x 0.2 = 0.008 KN\M²

• INTONANCO

SPESSORE: 1 CM

PESO PROPRIO: 1800 KG\M³ VOLUME: 0.01 X 1 X 1 = 0.01 M³ PESO AL M^{2:} 0.01 x 18 = 0.18 KN\M²

• aggiungendo il contributo di tramezzi (1 KN/m2) e impianti (0,5 KN/m2).

$$q_p = 0.072 + 0.6 + 0.008 + 0.18 + 1.5 = 2.36 \text{ KN} M^2$$

CARICHI ACCIDENTALE **Q**a

IL carico accidentale dipende dalla destinazione d'uso dell'edificio: in questo caso si considera un **Uffici non** aperti al publico.

$$q_a = 2 KN M^2$$

	Α	В	С	D	Е	F	G
1	interasse (m)	$q_s (KN/m^2)$	$q_p (KN/m^2)$	$q_a (KN/m^2)$	$q_u (KN/m)$	luce (m)	M _{max} (KN*m)
2							
3	5.00	2.61	2.36	2.00	49.67	6.00	223.49
4					55.03	6.00	247.62
5	6.00	2.61	2.36	2.00	59.60	6.00	268.19
6					64.67	6.00	291.01
7							

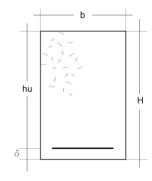
$$q_{tot} = {}_{Y}q_{s} + {}_{Y}q_{p} + {}_{Y}q_{a} = (1.3 q_{s} + 1.5 q_{p} + 1.5 q_{a}) KN\backslash M^{2}$$

A questo punto bisogna determinare il momento massimo agente sulla trave. A tale scopo la tabella Excel ha bisogno di conoscere la luce della trave; si ricorda che nell'ipotesi del modello più semplice di trave doppiamente appoggiata, il momento massimo si trova nella sezione di mezzeria e vale:

$$Mmax = \frac{qul^2}{8}$$

Per il cemento armato avrò due tensioni di progetto essendo un materiale non omogeneo, una per l'acciaio \mathbf{f}_{vd} dove y sta per yield ossia snervamento,e una per il calcestruzzo \mathbf{f}_{cd} .

La tensione di progetto per l'acciaio che deve resistere a trazione f_{yd} rappresenta la tensione caratteristica di snervamento dell'acciaio che da normativa equivale a **450 N/mm²** per quanto riguarda i ferri impiegati nel cls armato

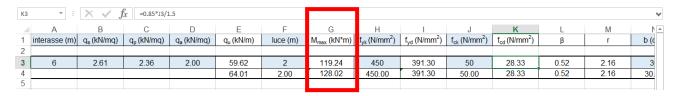

La tensione di progetto per il calcestruzzo è data dalla resistenza caratteristica del cls a resistere a compressione f_{cd} è la resistenza caratteristica a compressione del calcestruzzo data dal tipo di cls scelto, e in questo caso è 50 N/mm²

Ora per trovare H_{min} della sezione trave ho bisogno inserire nel foglio excel la base $\mathbf{b} = \mathbf{30}$ cm ipotizzata per trovare l'altezza utile della sezione reagente in calcestruzzo

	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	_
1	M _{max} (KN*m)	f _{yk} (N/mm ²)	f _{yd} (N/mm ²)	f _{ck} (N/mm ²)	f _{cd} (N/mm ²)	β	r	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	Н	H/I	area (m²)	peso unitario (KN/m)	
2																
3	223.49	450.00	391.30	50.00	28.33	0.52	2.16	30.00	34.96	5.00	39.96	45.00	0.07	0.14	3.38	
4	243.24	450.00	391.30	50.00	28.33	0.52	2.16	30.00	36.47	5.00	41.47	verificata				
5	268.19	450.00	391.30	50.00	28.33	0.52	2.16	30.00	38.30	5.00	43.30	45.00	0.08	0.14	3.38	
6	287.93	450.00	391.30	50.00	28.33	0.52	2.16	30.00	39.68	5.00	44.68	verificata				
7	_															

L'altezza minima viene H_{min} = h_U + δ = 38.30 + 5 = 43.30 cm

Ho trovato ora l'altezza minima che deve avere la mia sezione rettangolare di base 30 cm, dopodiché ingegnerizzo per sicurezza l'altezza a **H = 45cm**.


5. DIMENSIONAMENTO MENSOLA ANALISI DEI CARICHI

CARICHI STRUTTURALI Qs = 2.6132 KN\M2

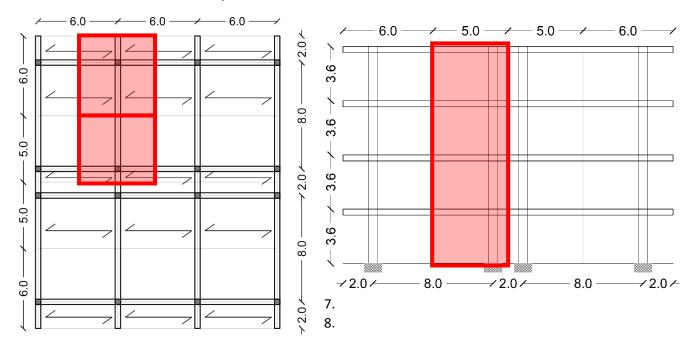
CARICHI PERMANENTE $q_p = 2.36 \text{ KN/M}^2$

CARICHI ACCIDENTALE $\mathbf{q}_a = 2 \text{ KN/M}^2$

Ora andiamo ad inserire i dati nella tabella excel inserendo i qs, qp, qa e mi trovo il qu, Inserisco la il valore della luce della trave per trovare quanto vale il \mathbf{M}_{max} .

Uso la classe di resistenza caratteristica dell'acciaio f_{yk} da armatura B450C che vale **450 MPa** (N/mm2) e la classe di resistenza del calcestruzzo f_{ck} per uso ordinario C40/50 che equivale a **50 MPa**. Excel calcola la **tensione di progetto dell'acciaio f_{vd}**

1	N b (cm)	O h _u (cm)	P δ (cm)	Q H _{min} (cm)	R H (cm)	S area (m²)	T peso (kN/m)	U Q _e	V E (N/mm²)	W I _x (cm ⁴)	X v _{max} (cm)	Y I/v _{max}	Z	A
2	()		, ,		(,		()	-10	_ (,	*******	- max (· ·)	- Ilida		
3	30	25.54	5	30.54	45	0.14	3.38	39.21	21000	227813	0.16	1220.02	Sì	
4	30.00	26.46	5.00	31.46	verificata									
5														


Inserisco la base b della trave $\mathbf{b} = \mathbf{30}$ cm, così da trovare l'altezza utile della sezione hu dalla quale ricaverò l'altezza minima della sezione \mathbf{H}_{min} .

Per verificare la correttezza scelgo l'altezza della trave H = 45 >H_{min}.

6. DIMENSIONAMENTO PILASTRI

AREA DI INFLUENZA

In cui L1 e L2 sono le due luci della pianta

SFORZO NORMALE DI COMPRESSIONE N

Nel secondo gruppo di colonne devono essere inseriti una serie di dati necessari per determinare lo sforzo normale di compressione N, il quale dipende dal carico dovuto al peso proprio delle travi che si poggiano in testa al pilastro, dal carico dovuto al solaio e dal numero di piani dell'edificio analizzato.

ANALISI DEI CARICHI

CARICHI STRUTTURALI Qs = 0.522 KN\M2

CARICHI PERMANENTE $q_p = 3.73 \text{ KN/M2}$

CARICHI ACCIDENTALE **q**a = 2 KN\M2

CARICHI DOVUTO AL PESO PROPRIO DELLE TRAVI PRINCIPALE = $(0.3 \times 0.45) \text{ M}^2\text{x} 25 \text{ KN}\text{M}^3 = 3.375 \text{ KN}\text{M}$ CARICHI DOVUTO AL PESO PROPRIO DELLE TRAVI SECONDARIE = $(0.3 \times 0.45) \text{ M}^2\text{ x} 25 \text{ KN}\text{M}^3 = 3.375 \text{ KN}\text{M}$ NUMERO DI PIANI 4

	Α	В	С	D	F	F	G	Н	ı	.l	K	ı	М
1	L _p	L _s	Area	trave _p		q _{trave}	q _s	q _p	q _a	q _{solaio}	n _{piani}	N	f _{ck}
2	m	m	m2	kN/m	kN/m	kN	kN/mq	kN/mq	kN/mq	kN		kN	Мра
3													
4	6.00	6.00	36.00	3.38	3.38	52.65	0.52	3.73	2.00	333.85	4	1546	50.0
5	6.00	5.00	30.00	3.38	3.38	48.26	0.52	3.73	2.00	278.21	4	1306	50.0
6	6.00	3.00	18.00	3.38	3.38	39.49	0.52	3.73	2.00	166.92	4	826	50.0
7	5.00	3.00	15.00	3.38	3.38	35.10	0.52	3.73	2.00	139.10	4	697	50.0
8													

L'AREA MINIMA NECESSARIA

 f_{ck} : 50 N/mm2. è la resistenza caratteristica a compressione del calcestruzzo data dal tipo di cls scelto in questo caso

mi ricavo la tensione ammissibile di progetto a compressione f_{cd} = 28.03 MPa.

A_{min}= N/ Fcd=545.6 cm2

	M	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	F
1	f _{ck}	f _{cd}	A_{min}	b_{min}	E	β		λ*	$ ho_{min}$	b_{min}	b	h_{\min}	h	F
2	Мра	Мра	cm2	cm	Мра		m		cm	cm	cm	cm	cm	
3														
4	50.0	28.3	545.6	23.4	21000	1.00	3.60	85.53	4.21	14.58	30.00	18.19	45.00	ŀ
5	50.0	28.3	460.9	21.5	21000	1.00	3.60	85.53	4.21	14.58	30.00	15.36	45.00	Ŀ
6	50.0	28.3	291.4	17.1	21000	1.00	3.60	85.53	4.21	14.58	30.00	9.71	45.00	ŀ
7	50.0	28.3	245.9	15.7	21000	1.00	3.60	85.53	4.21	14.58	30.00	8.20	45.00	ŀ
8														П

RAGGIO DI INERZIA MINIMO

Grazie al raggio di inerzia minima e al fatto che la sezione del pilastro è rettangolare e piena posso trovarmi la base minima della sezione del pilastro.

E= 21000Mpa modulo di elasticità

 β = 1 il pilastro è vincolato a terra tramite un incastro e nel nodo trave pilastro tramite sempre un incastro.

I= 3.6m altezza del pilastro

Con le formule che abbiamo dimostrato in classe il foglio di Excel mi calcola:

 $\mathbf{b_{min}} = \rho_{min} \, 2\sqrt{3} = 14.85 \, \text{cm}$ ingenierizzo a $\mathbf{b} = \mathbf{30} \, \mathbf{cm}$

 $h_{min} = b/A_{min} = 18.19 \text{ cm}$ ingenierizzo a h = 45 cm

Una volta che ho base e altezza ingenierizzate della sezione del pilastro trovo l'area di design e **il momento** di inerzia di design

 $A_{design} = b \times h = 1350 \text{ cm}^2$ $I_{design} = h \times b^3 / 12 = 101250 \text{ cm}^4$

VERIFICA A PRESSO-FLESSIONE

	X	Υ	Z	AA	AB	AC	AD	AE	AF	AG	-
1	h _{min}	h	A _{design}	l _{design}	I _{max}	W_{max}	\mathbf{q}_{t}	M _t	σ_{max}		
2	cm	cm	cm2	cm4	cm4	cm3	kN/m	kN*m	Мра		
3											
4	18.19	45.00	1350	101250	227813	10125.00	55.64	166.92	27.94	Sì	
5	15.36	45.00	1350	101250	227813	10125.00	46.37	139.10	23.41	Sì	
6	9.71	45.00	1350	101250	227813	10125.00	27.82	83.46	14.36	Sì	
7	8.20	45.00	1350	101250	227813	10125.00	27.82	57.96	10.89	Sì	
8											