MODELLAZIONE ad ELEMENTI FINITI per il SISTEMA COSTRUTTIVO PLATFORM FRAME

Fabiana Riparbelli

Parte Prima

INDICE

_Abstrac	et		pag. 3
1. Il Ben	chmarl	X	pag. 5
2. Mode	llazion	e in SAP2000	pag. 6
	2.1	La Griglia (GRID)	pag. 7
	2.2	I Materiali	pag. 9
	2.3	Le Sezioni degli Elementi Strutturali	pag. 12
	2.4	Definizione dei Link	pag. 15
2	2.5	Generazione della Discretizzazione (FEM)	pag. 17
3. Esemp	pio di C	Calcolo: Determinazione della Rigidezza del Pannello	pag. 26

Modellazione ad elementi finiti per il sistema costruttivo Platform Frame Fabiana Riparbelli Dottorato in Scienze dell'Ingegneria Civile, Università Roma Tre Roma, 25 maggio 2013

ABSTRACT

Questo rapporto ha l'obiettivo di presentare in maniera semplice l'analisi ad elementi finiti di un sistema costruttivo utilizzato negli edifici in legno, ossia il sistema Platform Frame.

L'ambizione palese, che si evince dall'estremo dettaglio di descrizione dell'algoritmo, è quella di consentire ad un qualunque studente della laurea magistrale di Architettura di effettuare con relativa sicurezza le analisi riportate nel rapporto. Prerequisiti essenziali sono che lo studente conosca il software SAP2000 e che abbia concetti basilari della meccanica dei materiali e delle strutture, quali massa volumica, coefficiente elastico, rigidezza etc.

Per questo motivo, il tono potrebbe sembrare eccessivamente didascalico; in realtà quanto scritto è lo stretto necessario per rendere il lettore completamente autonomo nel ripercorrere tutti i passi dell'analisi.

1. IL BENCHMARK

Il sistema costruttivo che si sta analizzando è quello del *platform frame*, sistema caratterizzato da una forte prefabbricazione e da una marcata standardizzazione.

L'analisi che verrà di seguito impostata fa riferimento alla tipologia di pannello utilizzato nella competizione *Solar Decathlon Europe 2012*, composto di traversi e montanti in legno lamellare chiusi da due fogli di OSB; l'unione tra i fogli di OSB e la struttura interna è realizzata mediante cambrette a sezione rettangolare in acciaio, applicate tramite una macchina a controllo numerico.

Per l'analisi numerica si utilizzerà il software di calcolo SAP2000. Per svolgere correttamente un'analisi numerica è assolutamente necessaria la corretta modellazione geometrica; decidiamo di modellare un sistema costruttivo composto di due pannelli, come riportato nella figura sottostante:

Fig.1

2. MODELLAZIONE IN SAP2000

Per poter impostare correttamente un'analisi è necessario che la modellazione degli elementi strutturali tenga conto del codice di calcolo sul quale si basa il software che si sta utilizzando. SAP2000 è un software di analisi strutturale che utilizza il modello di Eulero-Bernoulli ed il metodo degli elementi finiti (FEM); un elemento trave viene rappresentato dal suo asse centrale, mentre un elemento superficie si rappresenta mediante la sua superficie mediana.

Nel nostro caso abbiamo deciso di modellare traversi e montanti come elementi *Frame*, i pannelli OSB come elementi *Area* ed abbiamo reso la loro unione inserendo dei *Link* che simulassero il comportamento reale delle cambrette.

Ciò premesso vediamo come si procede alla modellazione del pannello *platform frame*; come prima cosa scegliamo di creare un nuovo modello, *New Model*, e scegliamo il pacchetto di unità di misura tra quelli presenti di default nel software. Nel nostro caso si è scelto di lavorare con KN, m, e C:

Fig. 2

2.1 LA GRIGLIA (GRID)

SAP2000 ci da la possibilità di utilizzare alcuni modelli pre-impostati, *template*, per disegnare la struttura; non rientrando in una tipologia strutturale ordinaria, scegliamo di modellare il pannello a partire da una semplice griglia di riferimento, utilizzando il *template Grid Only*. Una volta selezionato il *template* si aprirà la seguente finestra:

Cartesian	Cylindrical
Coordinate System I	Name
GLOBAL	
Number of Grid Line	18
X direction	5
Y direction	3
Z direction	2
Grid Spacing	
X direction	0,605
Y direction	0,0875
Z direction	2,440
First Grid Line Local	tion
X direction	0,
Y direction	0,
Z direction	0,

Fig. 3

nella quale si ha la possibilità di impostare la griglia. I valori riportati in figura derivano dalle dimensioni del pannello descritto in Fig. 1 e sono espressi in metri, in accordo con il pacchetto di unità di misura precedentemente selezionato.

Una volta impostati i valori di *Number of Grid Lines* e di *Grid Spacing* si può cominciare a lavorare nello spazio modello di SAP. I valori impostati corrispondono alla griglia tridimensionale riportata in Fig. 4:

Fig. 4

Utilizzando i comandi rapidi nella barra degli strumenti di SAP2000 è possibile cambiare la modalità di visualizzazione, da tridimensionale a bidimensionale, e scegliere il piano in cui sarà visualizzato il modello:

Assign	Analyze	Display	Design	Options	Tools
Q Q	Q Q	۹ 🗶	🔊 xy xz	z yz nv	(1) 6 2

Fig. 5

Nel caso di strutture tridimensionali la possibilità di lavorare su piani diversi semplifica il processo di modellazione.

2.2 I MATERIALI

Prima di disegnare gli elementi strutturali che comporranno il pannello andiamo a definirne i materiali. Utilizziamo il comando *Define* e successivamente *Materials* e scegliamo la voce *Add New Material*:

ine Materials	
Materials	Click to:
4000Psi 4992Eu50	Add New Material
	Add Copy of Material
	Modify/Show Material
	Delete Material
	Show Advanced Properties
	ОК
	Cancel

Fig. 6

Si aprirà la finestra riportata in Fig.7. Nel database di SAP2000 sono presenti due soli materiali predefiniti, acciaio e cemento armato; dovendo utilizzare il legno lamellare e l'OSB bisogna creare almeno due nuove voci. Selezioniamo come *Material Type* la voce *Other*, che ci consente di definire un materiale diverso da quelli già presenti nel software:

Region	Europe	•
Material Type	Other	
Standard	User	Y
Grade		Ŧ

Fig. 7

Dando l'ok si ha subito la possibilità di inserire i dati relativi al materiale che si sta definendo; tuttavia, in questo caso specifico dobbiamo definire un materiale non isotropo per il quale sono necessari dei settaggi specifici. Scegliamo allora la voce *Switch to Advanced Property Display*, come illustrato in Fig.8:

Material Name and Display Color	MAT
Material Type	Other
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 76,972	9 KN, m, C 💌
Mass per Unit Volume 7,849	
sotropic Property Data	
Modulus of Elasticity, E	1,999E+08
Poisson's Ratio, U	0,3
Coefficient of Thermal Expansion, A	1,170E-05
Shear Modulus, G	76903069

Fig. 8

A questo punto impostiamo il nome del materiale e scegliamo come *Directional Symmetry Type* la voce *Orthotropic*. Infine andiamo a definire le proprietà del materiale, quali peso, modulo elastico, etc., selezionando la casella *Modify/Show Material Properties*:

	M - 17 - 10
Material Notes	Modify/Show
Options	
Material Type	Other
Directional Symmetry Type	Orthotropic
Display Color	
🥅 Material Properties are Temp	perature Dependent
Markey Channel	at sid December 1

Fig. 9

In Fig. 10 sono riportati i valori utilizzati per definire il materiale "LEGNO", i quali dipendono esclusivamente dalle caratteristiche meccaniche della tipologia di legno che si è scelto di utilizzare:

ndveride in alline	Material Type	Symme	Symmetry Type	
LEGNO	Other	Orthot	Orthotropic	
fodulus of Elasticity	Weight and Mass		Units	
E1 11000000	Weight per Unit Volume	3,43	KN, m, C 💌	
E2 370000,	Mass per Unit Volume	0,35	-	
E3 1.999E+08	- Advanced Material Property Data			
Poisson's Ratio	Nonlinear Material Data	Mate	rial Damping Properties	
U12 0.0	Time Dependent Properties		Thermal Properties	
U13 0.3				
U23 0.3				
Coeff of Thermal Expansion	n			
Coeff of Thermal Expansion	n 1			
Coeff of Thermal Expansion A1 [1.170E-05 A2 [1.170E-05	1			
Coeff of Thermal Expansion A1 [1.170E-05 A2 [1.170E-05 A3 [1.170E-05	n - -			
Coeff of Thermal Expansion A1 [1.170E-05 A2 [1.170E-05 A3 [1.170E-05 Shear Modulus	n - -			
Coeff of Thermal Expansion A1 [1.170E-05] A2 [1.170E-05] A3 [1.170E-05] Shear Modulus 5 G12 [690000]	n - -			
Coeff of Thermal Expansion A1 [1.170E-05] A2 [1.170E-05] A3 [1.170E-05] Shear Modulus 612 612 [890000, 613 [76903069]	- - -			
Coeff of Thermal Expansion A1 1.170E-05 A2 1.170E-05 A3 1.170E-05 Shear Modulus 612 612 690000 613 76903069 623 76903069				

Fig. 10

Con lo stesso procedimento definiamo il materiale da applicare ai pannelli di OSB. Anche in questo caso si tratta di un materiale ortotropo, ed i valori utilizzati sono riportati nella Fig. 11:

0.00	- Ditter	Sym	netry Type	
lose	lone	loia	orope	
Modulue of Elasticity	Weight and Mass	Press.	Units	
E1 3500000,	Weight per Unit Volume	5.4	KN, m. C 💌	
E2 1400000,	Mass per Unit Volume	0.55		
E3 1.999E+10	- Advanced Material Property Da	da		
Poisson's Ratio	Nonlinear Material Data	M.	Material Damping Properties	
U12 0.3	Time Dependent Property	s	Thermal Properties	
U13 0.3				
1100 0.0	-			
023 10,5				
Coeff of Themal Expansion				
Coeff of Thermal Expansion A1 1,170E-05				
023 0.3 Coeff of Thermal Expansion A1 1.170E-05 A2 1.170E-05				
023 0.3 Coeff of Thermal Expansion A1 A1 1.170E-05 A2 1.170E-05 A3 1.170E-05				
023 0.3 Coeff of Thermal Expansion 1.170E-05 A1 1.170E-05 A2 1.170E-05 A3 1.170E-05 Shear Modulus 1.170E-05				
023 10.3 Coeff of Themal Expansion 1.170E-05 A1 1.170E-05 A2 1.170E-05 A3 1.170E-05 Shear Modulus 1000000,				
023 0.3 Coeff of Themal Expansion A1 1.170E-05 A2 1.170E-05 A3 1.170E-05 Shear Modulus 612 G12 1000000, G13 7.690E+10				

Fig. 11

2.3 LE SEZIONI DEGLI ELEMENTI STRUTTURALI

Definiti i materiali dobbiamo definire le sezioni degli elementi strutturali. Dal menù *Define* selezioniamo *Section Properties* e poi *Frame Section* e scegliamo *Add New Property*:

Frame Properties	
Properties	Click to:
Find this property:	Import New Property
	Add New Property
	Add Copy of Property
	Modify/Show Property
	Delete Property
	Cancel

Fig.12

Abbiamo la possibilità di scegliere tra alcuni modelli di sezioni già presenti in SAP2000. Dovendo definire la dimensione dei montanti rettangolari, scegliamo *Rectangular* tra le sezioni di default del *Concrete*:

Add Frame Section Proper	ty		
Select Property Type			
Frame Section Property	и Туре	Concrete	
Click to Add a Concrete	Section		
Rectangular	Circular	Pipe	Tube
Precast I	Precast U		
	Can	cel	

Fig. 13

Il fatto che la sezione faccia parte del pacchetto di sezioni default del cemento non ha importanza, poiché il materiale verrà assegnato a posteriori; mediante il passaggio descritto in Fig. 13 abbiamo scelto unicamente la geometria. Nella finestra *Rectangular Section* impostiamo quindi nome della sezione, materiale e dimensioni dei "TRAVERSI":

Section Name	TRAVE	RSI
Section Notes	1	Modify/Show Notes
Properties Section Properties	Property Modifiers	Material + LEGNO
Dimensions Depth (t3) Width (t2)	0.12	3.
		Display Color

Fig. 14

Analogamente definiamo sezione e materiale dei "MONTANTI", come riportato in Fig. 15:

Section Name	MONTA	MONTANTI			
Section Notes		Modify/Show Notes			
Properties Section Properties	Property Modifiers	Material + LEGNO			
Dimensions					
Depth(t3)	0,08				
Width (t2)	0,16				
		Display Color 🗾			

Per definire invece lo spessore del pannello OSB torniamo al menù *Define*, *Section Properties* e scegliamo la voce *Area Section*. Selezioniamo come *Type to Add* la voce *Shell*, ed andiamo ad aggiungere una nuova sezione:

Area Sections					
Sections	Select Section Type To Add				
None	Shell				
	Click to:				
	Add New Section				
	Add Copy of Section				
	Modify/Show Section				
	Delete Section				
	OK Cancel				

Fig. 16

Dalla finestra, riportata in Fig. 17, è possibile sia definire sezione e tipologia di shell, sia assegnarvi un materiale:

Section Name	OSB
Section Notes	Modify/Show
	Display Color 🛛 🧮
Туре	
Shell - Thin	
C Shell - Thick	
C Plate - Thin	
C Plate Thick	
C Membrane	
C Shell - Layered/No	onlinear
Modify/	/Show Layer Definition
Material	
Material Name	+ OSB 💌
Material Angle	0,
Thickness	<u>AU 92</u>
Thickness Membrane	0,015
Thickness Membrane Bending	0,015
Thickness Membrane Bending Concrete Shell Section	0,015 0,015 Design Parameters
Thickness Membrane Bending Concrete Shell Section Modify/Show S	0,015 0,015 Design Parameters Shell Design Parameters
Thickness Membrane Bending Concrete Shell Section Modify/Show S	0,015 0,015 Design Parameters Shell Design Parameters
Thickness Membrane Bending Concrete Shell Section Modify/Show S Stiffness Modifiers	0,015 0,015 Design Parameters Shell Design Parameters Temp Dependent Properties

Fig.17

2.4 DEFINIZIONE DEI LINK

L'ultimo passo prima di procedere alla modellazione è quello di definire le proprietà dei link che garantiranno il corretto comportamento dell'unione. Torniamo al menù *Define, Section Properties* e scegliamo *Link/Support Properties*:

perties	Click to:
	Add New Property
	Modify/Show Property.
	Delete Property
	ОК
	OK

Fig. 18

Anzitutto definiamo nome e tipologia del *Link*. Per una prima modellazione assegniamo il *Link/Support Type Linear*, ovvero andiamo a definire solo il comportamento lineare delle cambrette. Stabiliamo quindi le *Directional Properties*, ovvero quali sono gli spostamenti e rotazioni consentiti ed in quali direzioni. Quello che ci interessa analizzare è il comportamento in piano del *Link*; secondo gli assi locali assegnati in automatico da SAP2000: il piano definito dagli assi 2 e 3 corrisponde al piano di taglio dell'elemento, mentre l'asse 1 corrisponde al suo asse centrale Impostiamo quindi le *directional properties* impedendo lo spostamento *U1* (*Fixed*), ovvero lo spostamento fuori dal piano, e consentiamo tutti gli altri spostamenti e rotazioni:

Link/support Type	Support Type Linear exty Name CAMBRETTE 5		et Default Name	
Property Name				
Property Notes			Modity/Show	
Total Mass and Wei	gu .			
Mass	0.	Rotational Inertia 1	0.	
Weight	0,	Rotational Inertia 2	0,	
		Rotational Inertia 3		
		-	Call During and All States	
Direction Fixed	8 <u> </u>	Properties	Advanced	
Direction Fixed		Modily/Show for AlL.	Advanced.	
Direction Fixed PU1 P PU2 F		Properties Modily/Show for AlL.	Advanced.	
Direction Fixed PU1 P PU2 F PU3 F		Properties Modily/Show for AlL.	Advanced	
Direction Fixed PU1 P PU2 F PU3 F PR1 F		Properties Modily/Show for AL.	Advanced	
Direction Fixed קיוז קי קיוז קי קיוז קי קיוז קי קיוז קי קיוז קי		Hodily/Show for All.	Advanced	
Direction Fixed PU1 P PU2 F PU3 F PU3 F PA1 F PA2 F PR3 F		Hodily/Show for All.	Advanced DK Cancel	

Fig. 19

Il valore della rigidezza dell'unione deriva da calcoli di normativa ed è stato assunto pari a 250 kN/m; questo va assegnato unicamente agli spostamenti U2 ed U3, ovvero nelle direzioni lungo le quali le cambrette oppongono resistenza. La rigidezza delle rotazioni deve essere invece pari a zero, poiché le cambrette devono essere libere di ruotare in tutte le direzioni:

CAMPORTE	Stiffness Is Uncoupled		19	C Stiffness Is Coupled		
COMBRETTE	U1	U2	υD	R1	R2	R3
Directional Control	Fixed	250,	250,	0,	0,	0,
Direction Fixed						
ম মেম						
IV U2 IT						
I¥ U3 □						
R RI L						
IØ 82 □	Damping Values Used F	or All Load Case	н			
R 81 E	Damping Is Un	coupled		← Damping Is	Coupled	
P N3 1	UI	U2	U3	R1	R2	83
Shear Distance from End J	pred	10'	10'	10	lo.	lo.
U2 0.044						
U3 0.044						
Units						