Esercitazione 1

Federica Alfonsi

Progetto di una travatura reticolare spaziale in acciaio

Ho impostato la travatura reticolare a partire da una griglia di base 3x3x2 rispetto ai sistemi di riferimento globali, con un modulo di 3x3x3 m e ho disegnato, attraverso il comando *Draw Frame*, i profili delle aste.

Ho ripetuto la griglia lungo l'asse x e y in modo da ottenere una struttura con una lunghezza complessiva di 48 m e di larghezza 24 m. Successivamente, affinché la struttura potesse risultare isostatica, ho selezionato tutte le aste e ho rilasciato i momenti ai vincoli d'incastro per mezzo del comando *Assign->Frame->Releases/Partial Fixity*. I nodi, in questo modo, potevano essere considerati come delle cerniere interne.

A questo punto, selezionando la totalità delle aste e attraverso il comando *Assign->Frame->Frame Sections*, ho assegnato il profilo circolare "pipe" in acciaio e in particolare ho scelto la classe di resistenza S275, che rispetta la normativa italiana NTC 2008.

Dopodiché ho assegnato dieci cerniere ai nodi della struttura in modo che risultasse uno sbalzo da 6 m sui lati più lunghi e una luce, tra di appoggi, di 12m.

Ho definito il peso proprio della struttura attraverso il comando *Define->Load Patterns* ed ho avviato l'analisi del caso di carico da *Analyze->Run Analysis*.

le coau Patterns							Care Name	Ture	Statur	Action	Click to:
bad Patterns Load Pattern Name	Туре	Self Weight Multiplier	Auto Lateral Load Pattern		Click To: Add New Load Pattern		DEAD MODAL	Linear Static Modal	Not Bun Not Bun	Run Do Not Run	Bun/Do Not Run Case
AD AD	DEAD	<u> </u>	<u></u>	•	Modify Lateral Load Pattern Delete Load Pattern						Run/Do Not Run All Delete All Results Show Load Case Tree
				-	Show Load Pattern Notes	-/	I nalysis Monitor D ∩ Always Show ∩ Never Show ≆ Show Alter	ptions			Model-Alive Run Now OK Canc

Al completamento dell'analisi, il programma mi ha mostrato la deformazione del modello ed ho estratto le tabelle su Excel aventi i valori riferiti ai nodi della struttura, per mezzo del passaggio *Display->Show Tables*, selezionando esclusivamente *Joint Output* ed estraendo la tabella "Joint Reactions".

	Load Patterns (Model Def.)
B Bober Derivition (o of 47 tablet telected)	Select Load Patterns
B D Property Definitions	1 of 1 Selected
	Lod Case Realth Lod Case Realth Select Lod Case. T of 1 Selected Modly/Show Option. <u>Sel</u> Option Selection Option Show Universited
	Named Sets Save Named Set
	Shrow Manual Sat
	STOW HUNDS SEC.

Sommando le reazioni che si sviluppano lungo l'asse verticale, ho ottenuto il valore totale del peso proprio della struttura, ovvero 989.70 KN. La travatura reticolare è pensata per sostenere il peso di 4 piani; complessivamente la superficie per piano risulta 48x24= 1152 mq mentre il peso a metro quadro per piano 10 KN/mq.

A questo punto ho il operato il prodotto tra superficie totale, peso a metro quadro e numero dei piani, per poi sommare, al risultato, il valore del peso proprio della struttura reticolare: 1152 (mq) x 10 (KN/mq) x 4= 46080 KN 46080 (KN) + 989.70 (KN)= 47069.70 KN

Successivamente ho diviso il totale per la superficie, ottenendo: 47069.70 (KN)/ 1152 (mq)= 40.85 (KN/mq). Definisco un nuovo caso di carico "F" su SAP, assegnando 0 al *Self Weight Multiplier*.

Joint	OutputCase	F3	
Text	Text	KN	
55	DEAD	124.762	
79	DEAD	122.008	
103	DEAD	57.548	
179	DEAD	57.548	
191	DEAD	122.008	
207	DEAD	124.762	
223	DEAD	128.342	
239	DEAD	62.188	
		989.696	

oad Patterns		Self Weight	Auto Lateral	Click To:
Load Pattern Name	Туре	Multiplier	Load Pattern	Add New Load Pattern
2	DEAD	• 0		Modify Load Pattern
DEAD	DEAD	1		Modify Lateral Load Pattern
			-	Delete Load Pattern
			↓	Show Load Pattern Notes

Dunque, per mezzo del comando Assign->Joint Loads->Forces, ho assegnato ai nodi, nella casella Force Global Z, i carichi in riferimento alle rispettive fasce di spettanza (con il segno negativo poiché rivolti verso il basso): Nodi centrali 40.85 x 9 = 367.65 Nodi perimetrali 40.85 x 4.5 = 183.82 Nodi angolari 40.85 x 2.25 = 91.91

Ho fatto partire l'analisi considerando solo il caso di forza "F" e il programma mi ha mostrato il seguente risultato:

Di conseguenza ho esportato su Excel la tabella "*Elemente Forces- Frame*" relativa alle aste della struttura, ho ordinato dal più piccolo al più grande i valori di *Station* e della forza *P*, eliminando tutte le aste che risultavano avere un valore *Station* diverso da 0. A questo punto ho suddiviso le aste compresse dalle tese e ho operato dei sottogruppi in modo da raggiungere 4 tipi di profilato per ciascun tipo di asta e ottimizzare le sezioni.

TABLE: Element Forces - Frames		TABLE: Element Forces - Frames			TABLE: Element Forces - Frames			TABLE: Element Forces - Frames			TABLE: Element Forces - Frame			
Frame	Station	р	Frame	Station	Р	Frame	Station	Р	Frame	Station	Р	Frame	Station	Р
Text	m	KN	Text	m	KN	Text	m	KN	Text	m	KN	Text	m	KN
1	0	-2155.039	5	0	-829.095	116	0	0	175	0	237.992	192	0	579.87
1	0	-2155.039	6	0	-829.095	116	0	0	175	0	237.992	192	0	579.873
1	0	-2155.039	6	0	-795.935	116	0	0	175	0	237.992	192	0	579.873
1	0	-2040.893	6	0	-795.935	116	0	0	176	0	237.992	192	0	579.873
1	0	-2040.893	6	0	-795.935	116	0	0	176	0	237.992	192	0	579.87
1	0	-2040.893	6	0	-795.935	116	0	0	176	0	237.992	193	0	579.873
1	0	-2038.252	6	0	-795.935	116	0	0	177	0	237.992	193	0	579.87
1	0	-2038.252	6	0	-795.935	117	0	0	177	0	237.992	193	0	591.76
1	0	-2038.252	7	0	-795.935	117	0	0	177	0	272.667	193	0	591.76
1	0	-2012.374	7	0	-565.466	117	0	0	177	0	272.667	193	0	591.769
2	0	-2012.374	7	0	-565.466	117	0	0.072	177	0	272.667	193	0	624.35
2	0	-2012.374	7	0	-565.466	117	0	0.072	177	0	312.03	193	0	624.35
2	0	-2011.622	7	0	-565.466	117	0	0.072	177	0	312.03	194	0	624.35
2	0	-2011.622	7	0	-565.466	117	0	0.072	178	0	312.03	194	0	624.35
2	0	-2011.622	7	0	-565.466	118	0	0.072	178	0	312.03	194	0	624.35
2	0	-1452.115	8	0	-565.466	118	0	0.072	178	0	312.03	194	0	624.352
2	0	-1452.115	8	0	-536.173	118	0	0.072	179	0	312.03	194	0	624.35
3	0	-1452.115	8	0	-536.173	118	0	0.283	179	0	312.03	194	0	657.035
3	0	-1080.128	8	0	-536.173	118	0	0.283	179	0	321.077	194	0	657.03
3	0	-1080.128	8	0	-495.656	118	0	0.283	180	0	321.077	194	0	657.035
3	0	-1080.128	8	0	-495.656	118	0	0.283	180	0	321.077	194	0	668.914
3	0	-990.618	8	0	-495.656	118	0	0.283	180	0	321.077	194	0	668.914
2	0	000 610	8	0	-/191 107	110	0	0 202	101	0	221 077	105	0	652 91

Di questi 8 macrogruppi ho considerato esclusivamente i valori più grandi e li ho utilizzati per trovare i profilati più adatti.

538.76	1077.52	1616.28	2.155
298,6648	597,3295	895,9943	1194,659

Ho svolto il procedimento secondo i seguenti passaggi:

Aste compresse - ho inserito i precedenti valori nella tabella exel, ricavando l'area minima dello sforzo a

compressione, il raggio d'inerzia minimo e l'Inerzia minima

- ho consultato nel profilario l'elemento che soddisfacesse tali valori
- dopo aver assicurato la verifica della snellezza , ho ricavato il dimensionamento necessario per i

quattro profilati

Calcolo dell'area minima da sforzo di compressione (resistenza materiale)				Calcolo dell'inerzia minima per sforzo di compressione (instabilità euleriana)						
N	fyk	¥ m0	fyd	A_min	E	beta	1	Lam*	rho_min	l_min
kN	N/mm2		N/mm2	cm2	Мра		m		cm	cm4
-2155.04	275.00	1.05	261.90	82.28	210000.00	1.00	3.00	88.96	3.37	936
-1616.28	275.00	1.05	261.90	61.71	210000.00	1.00	3.00	88.96	3.37	702
-1077.52	275.00	1.05	261.90	41.14	210000.00	1.00	3.00	88.96	3.37	468
-538.76	275.00	1.05	261.90	20.57	210000.00	1.00	3.00	88.96	3.37	234

Ingegnerizzazione sezione e verifica snellezza per una membratura principale (< 200)

1				
A_design	l_design	rho_min	lam	Profilo (dxs)
cm2	cm4	cm		mm
87.4	13201	12.30	24.39	355.6 x 8.0
70.7	8869	11.20	26.79	323.9 x 7.1
47.0	4206	9.46	31.71	273.0 x 5.6
20.6	697	5.81	51.64	168.3 x 4.0

Aste tese - ho inserito i valori massimi dei 4 gruppi nella tabella exel, ricavando l'area minima dello sforzo a trazione - ho individuato nel profilario l'elemento che soddisfacesse tale valore, ricavando il dimensionamento

necessario dei quattro profilati

N	fyk	۷m	f _d	A_min	A_design	Profilo (dxs)
kN	Mpa		Мра	cm2	cm2	mm
298.66	275.00	1.05	261.90	11.40	12.50	114.3 x 3.6
597.33	275.00	1.05	261.90	22.81	23.20	168.3 x 4.5
895.99	275.00	1.05	261.90	34.21	39.50	219.1 x 5.9
1194.66	275.00	1.05	261.90	45.61	47.00	273.0 x 5.6