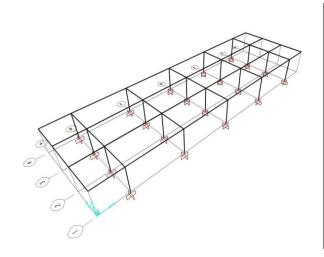
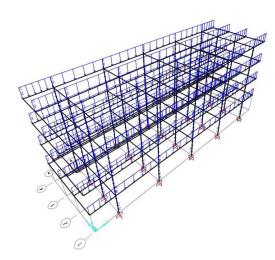
L'esercitazione prevede l'inserimento in SAP2000 delle strutture precedentemente dimensionate e la verifica delle sezioni prendendo in considerazione il peso della neve, la spinta del vento e quella del sisma.

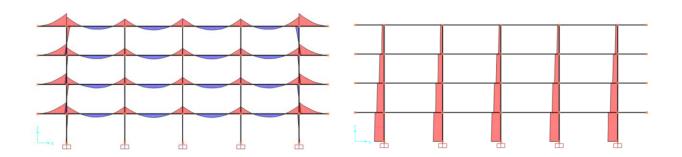
CALCESTRUZZO


Dopo aver impostato una griglia di partenza secondo i disegni di carpenteria, sono stati innanzitutto disegnati gli elementi del telaio del piano terra, assicurando che ogni frame fosse separato, in modo da ottenere dei nodi rigidi. La struttura è stata in seguito elevata per gli altri tre restanti piani e i pilastri sono stati vincolati al suolo con un incastro. Successivamente è stato assegnato il materiale (C45/55) e le relative sezioni per ciascun elemento, sulla base del predimensionamento dell'esercitazione precedente:


- trave principale 20cm x 45cm
- travi secondarie 20cm x 30cm*
- mensola 20cm x 45cm
- pilastro 30cm x 35cm
- * (Per quanto riguarda le travi secondarie, considerando che la loro funzione è per lo più quella di controventamento, si è ipotizzata una sezione meno snella delle principali, ma che mantenesse costante il valore della base).

Affinché l'impalcato potesse risultare rigido, selezionando tutti i punti delle travi, sono stati assegnati dei vincoli interni (tipologia **diaphragm**), diversi per ogni piano e aventi l'asse z come asse delle rotazioni. Di conseguenza sono stati definiti e assegnati alle travi principali i carichi distribuiti lineari qs, qp e qa moltiplicati per l'interasse:

$$qs = 11,76 \text{ kN/m}$$
 $qp = 3,06 \text{ kN/m}$ $qa = 6 \text{ kN/m}$


Si è passati, quindi, alla definizione della combinazione allo Stato Limite Ultimo, nella quale tali valori vengono considerati con il corrispondente coefficiente di sicurezza e nella quale viene incluso il peso proprio della struttura.

CARICO DELLA NEVE

Il passo seguente è stato verificare gli elementi nel caso del sovraccarico apportato dalla neve. Ipotizzando che l'edificio si collochi a Roma, è stato considerato un peso di 0,5 kN/mq il quale, moltiplicato per l'interasse di 3 m, è stato poi assegnato al solaio di copertura. Successivamente è stato definita una combinazione di carico SLU+neve, è stata avviata l'analisi e sono state esportate su Excel le tabelle in modo da individuare gli elementi più sollecitati e verificare l'attuabilità delle sezioni per loro progettate.

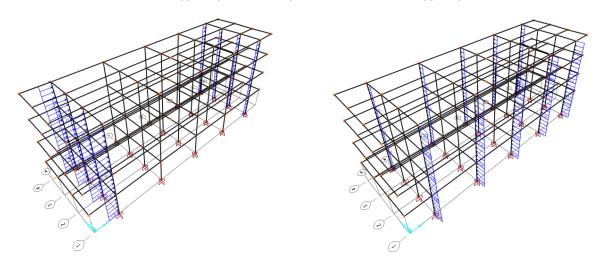
I valori ricavati indicano che la trave più sollecitata è soggetta ad un momento pari a 123,60 kNm, minore rispetto a quello del predimensionamento; la sezione pertanto è verificata.

M _{max} (KN*m)	f _{yk} (N/mm²)	f _{yd} (N/mm²)	f _{ck} (N/mm²)	$f_{cd}(N/mm^2)$	β	г	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	Η	H/I	area (m²)	peso unitario (KN/m)
129.95	450.00	391.30	45.00	25.50	0.49	2.20	20.00	35.13	5.00	40.13	45.00	0.07	0.09	2.25
143.11	450.00	391.30	45.00	25.50	0.49	2.20	20.00	36.87	5.00	41.87	verificata			
#VALORE!														
0.00														
M _{max} (KN*m)	f _{yk} (N/mm²)	f _{yd} (N/mm²)	f _{ck} (N/mm²)	f _{cd} (N/mm ²)	β	r	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	Ι	H/I	area (m²)	peso unitario (KN/m)
123.60	450.00	391.30	45.00	25.50	0.49	2.20	20.00	34.26	5.00	39.26	45.00	0.07	0.09	2.25
123.60	450.00	391.30	45.00	25.50	0.49	2.20	20.00	34.26	5.00	39.26	verificata			

Invece, per gli aggetti del solaio di copertura, il momento risultante si dimostra maggiore rispetto alla scorsa esercitazione; nonostante ciò la sezione è verificata.

M _{max} (kN*m)	f _{yk} (N/mm ²)	f _{yd} (N/mm ²)	f _{ck} (N/mm ²)	f _{cd} (N/mm ²)	β	r	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	H (cm)
129.95	450	391.30	45	25.50	0.49	2.20	20	35.13	5	40.13	45
143.11	450.00	391.30	45.00	25.50	0.49	2.20	20.00	36.87	5.00	41.87	verificata
M _{max} (kN*m)	f _{yk} (N/mm ²)	f _{yd} (N/mm ²)	f _{ck} (N/mm ²)	f _{cd} (N/mm ²)	β	r	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	H (cm)
M _{max} (kN*m) 162.30	f _{yk} (N/mm ²) 450	f _{yd} (N/mm ²) 391.30	f _{ck} (N/mm ²) 45	f _{cd} (N/mm ²) 25.50	β 0.49	r 2.20	b (cm) 20	h _u (cm) 39.26	δ (cm) 5	H _{min} (cm) 44.26	H (cm) 45
	ļ v	,			-	2.20 2.20			δ (cm) 5 5.00		
162.30	450	391.30	45	25.50	0.49		20	39.26	5	44.26	45

area (m²)	peso (kN/m)	q _e	E (N/mm²)	l _x (cm ⁴)	v _{max} (cm)	Vv _{max}	
0.09	2.25	20.07	21000	151875	0.64	470.85	Sì
_			_				
area (m²)	peso (kN/m)	q _o	E (N/mm ²)	l _x (cm ⁴)	v _{max} (cm)	V _{max}	
0.09	2.25	20.07	21000	151875	0.64	470.85	Sì


I pilastri più sollecitati, infine, sono sottoposti ad uno sforzo normale maggiore di quello del primo predimensionamento, ma la sezione risulta comunque verificata.

N	fck	f _{cd}	A _{min}	b_{min}	Е	β	1	λ*	P _{min}	b _{min}	b	h _{min}	h	A _{design}	I _{design}	I _{max}	W _{max}	\mathbf{q}_{t}	M _t	σ _{max}	
kN	Mpa	Mpa	cm2	cm	Mpa		m		cm	cm	cm	cm	cm	cm2	cm4	cm4	cm3	kN/m	kN*m	Mpa	
798	45.0	25.5	313.1	17.7	21000	2.00	3.00	90.15	6.66	23.05	30.00	10.44	35.00	1050	78750	107188	6125.00	28.88	86.63	21.75	Sì
N	fck	f _{od}	A _{min}	b_{min}	Е	β	-1	λ*	P _{min}	b _{min}	b	h _{min}	h	A _{design}	I _{design}	I _{max}	W _{max}	$q_{\rm t}$	Mt	σ_{max}	
kN	Mpa	Mpa	cm2	cm	Mpa		m		cm	cm	cm	cm	cm	cm2	cm4	cm4	cm3	kN/m	kN*m	Mpa	
1029	45.0	25.5	403.5	20.1	21000	2.00	3.00	90.15	6.66	23.05	30.00	13.45	35.00	1050	78750	107188	6125.00	0.00	0.00	9.80	Sì

In seguito sono stati analizzati i pilastri soggetti alle spinte orizzontali del vento e del sisma. Non potendo conoscere l'origine della direzione secondo cui queste spinte avvengono, sono stati analizzati due casi che prendono in considerazione le due tipiche direzioni ortogonali, x e y. Infine verrà svolto il dimensionamento in funzione della spinta che risulterà più influente.

SPINTA DEL VENTO

Nonostante il vento sia un agente dinamico e variabile, in questo caso è stata operata una semplificazione per il calcolo ed è considerato come statico. Sul programma SAP è stato perciò assegnato un carico distribuito dato dal prodotto della forza del vento per l'interasse dei pilastri di facciata; in particolare la forza ha un valore 0,4 kN/mq per i pilastri in sopravvento e 0,2 kN/mq per quelli sottovento.

Avviando l'analisi delle due combinazioni (SLU+ventox e SLU+ventoy), sono state esportate le tabelle Excel ed è stata creata un'apposita casella che considerasse il rapporto tra il momento e lo sforzo normale a cui sono sottoposti gli elementi. In questo modo si è potuto notare che la direzione più influente è quella in x, in quanto il pilastro più sollecitato (posto in copertura) presenta un rapporto M/N con valore pari a 0,215 m, maggiore di quello in y.

SPINTA DEL SISMA

L'azione sismica è un'azione dinamica, che si manifesta attraverso lo scorrimento orizzontale del terreno. Le vibrazioni, che si scaturiscono nella struttura dell'edificio, generano forze inerziali, che creano a loro volta dei sovraccarichi. Nel calcolo della forza sismica, i fattori più incisivi sono l'accelerazione di scorrimento e la massa dell'edificio e in particolare è espresso dalla relazione:

$$Fs = c \times W$$
 $W = P + 20\% N + 30\% Q$

in cui **c** il coefficiente di intensità sismica e **W** è uguale alla somma del peso dell'edificio P, del 20% del carico della neve N e del 30% del sovraccarico accidentale Q.

P = (qs + qp)x A = (3.92+1.02)kN/mq x (30x9)mq = 1333.8 kN

N = 0.5 kN/mq x A = 135 kN

Q = 2 kN/mq * A = 540 kN

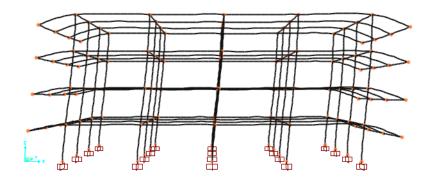
W = 1333,8 + 20% 135 + 30% 540 = 1333,8 + 27 + 162 = 1522,8 kN

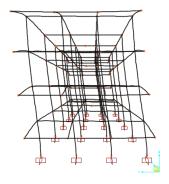
 $Fs = 0.3 \times 1522.8 = 456.84 \text{ kN}$

La forza sismica non si distribuisce in modo costante in alzato, ma linearmente nel centro d'area del solaio, pertanto la forza è direttamente proporzionale all'altezza del solaio a cui arriva:

$$\mathbf{F}_{i} = \frac{Fs \, x \, z_{i} \, x \, W_{i}}{\sum z_{i} \, x \, W_{i}}$$

Considerando che i piani hanno la stessa destinazione d'uso (W costante) e lo stesso interpiano, la formula si semplifica divenendo:


F1 = Fs x 1/10 = 45,70 kN


 $F2 = Fs \times 2/10 = 91,40 \text{ kN}$

 $F3 = Fs \times 3/10 = 137,05 \text{ kN}$

F4 = Fs x 4/10 = 182,73 kN

Tali valori vengono applicati nel centro di massa di ogni rispettivo piano e per entrambe le direzioni ortogonali x e y.

Dopo aver avviato l'analisi ed analizzato le tabelle Excel seguendo gli stessi procedimenti svolti per l'azione del vento, si è potuto vedere che, tra le varie combinazioni, il pilastro che presenta il valore maggiore del rapporto M/N è quello soggetto ad un'azione sismica in direzione x; in particolare tale rapporto coincide corrisponde al valore dell'eccentricità, che utilizziamo per verificare a pressoflessione il pilastro:

$$M = 59,21 \text{ kNm}$$

$$N = 216,03 \text{ kN}$$

$$e = 0.27$$

$$H/6 = 0.35 / 6 = 0.06 m$$

$$H/2 = 0.35 / 2 = 0.17 m$$

In questo caso M/N > H/2, ovvero la flessione è talmente grande che l'eccentricità porta la compressione fuori dalla sezione del pilastro; pertanto sarà necessario verificare solo la flessione (stessa verifica adottata per la trave nella prima esecitazione). Il pilastro con sezione 30x35 cm è verificato a pressoflessione.

Ī	M _{max} (KN*m)	f _{yk} (N/mm²)	f _{yd} (N/mm²)	f _{ck} (N/mm²)	f _{cd} (N/mm ²)	β	r	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	Н	H/I	area (m²)	peso unitario (KN/m)
I	35.21	450.00	391.30	45.00	25.50	0.49	2.20	30.00	14.93	5.00	19.93	35.00	0.03	0.11	2.63
I	35.21	450.00	391.30	45.00	25.50	0.49	2.20	30.00	14.93	5.00	19.93	verificata			

ACCIAIO

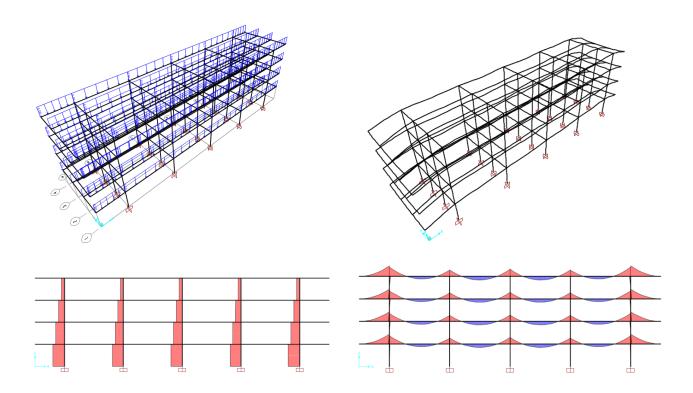
Come nel caso del calcestruzzo, è stato inserito su SAP il telaio in acciaio in base ai disegni di carpenteria e sono state assegnate le sezioni ipotizzate nel primo dimensionamento. Successivamente sono stati distribuiti sulle travi principali i carichi del solaio e della destinazione d'uso, moltiplicati per l'interasse di 3 m. In questo modo è stata definita la combinazione di carico allo SLU.

- qs = 6,42 kN/m

- trave principale IPE400

- qp = 3,54 kN/m

- travi secondarie IPE140


-qa = 6 kN/m

- mensola IPE400

- pilastro HEA180

CARICO DELLA NEVE

Di conseguenza gli elementi sono stati posti sotto verifica nel caso del sovraccarico apportato dalla neve. Il peso della neve è stato distribuito sul solaio di copertura ed è stata avviata l'analisi, esportando i dati su Excel considerando la combinazione dei carichi verticali SLU+neve.

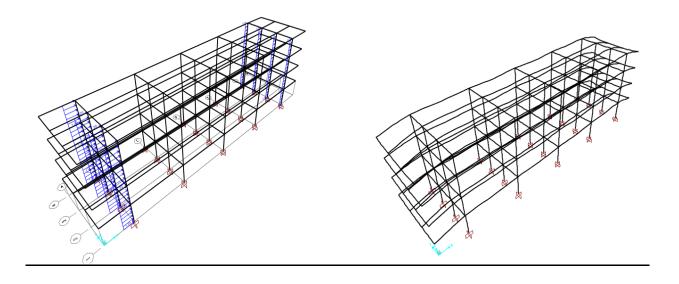
Ordinando i dati delle tabelle Excel, è stato possibile individuare lo sforzo assiale massimo a cui sono sottoposti i pilastri più sollecitati (posti al piano terra), ovverto $N_{\text{max}} = 788 \text{ kN}$. Tale valore risulta minore rispetto a quello trovato nel primo dimensionamento, pertanto la sezione può essere ridimensionata: si sceglie un profilato HEA140.

N	f _{yk}	Υm	f _{yd}	A _{min}	Е	β	-1	λ*	Pmin	I _{min}	A _{design}	I _{design}	Pmin	λ	profilo
kN	Mpa		Mpa	cm2	Mpa		m		cm	cm4	cm2	cm4	cm		
788	275.00	1.05	261.90	30.1	210000	2.00	3.00	88.96	6.74	1369	31.4	1033	5.73	104.71	HEA140

Per quanto riguarda lo sbalzo, nonostante il momento risultante \mathbf{M}_{max} = 199,79 kNm si dimostra inferiore rispetto a quello trovato in precedenza, non è possibile ridimensionare il profilato a causa di restrizioni date dalla normativa.

M _{max} (kN*m)	f _{y,k} (N/mm ²)	f _d (N/mm ²)	W _{x,min} (cm ³)	I _x (cm ⁴)	peso (kN/m)	q _e (kN/m)	E (N/mm ²)	v _{max} (cm)	I/v _{max}	
199.79	275	261.90	922.72	23130	0.663	17.943	210000	1.182	338.384	Sì

Infine la sezione della trave principale è risultata sovradimensionata, poiché il momento dell'elemento più sollecitato (\mathbf{M}_{max} = 179,51 kNm) è inferiore a quello del predimensionamento. E' stato scelto un profilato IPE330.


interasse (m)	q _s (KN/m ²)	q _p (KN/m ²)	q _a (KN/m ²)	q _u (KN/m)	luce (m)	M _{max} (KN*m)	f _{y,k} (N/mm ²)	f _d (N/mm ²)	W _{x,min} (cm ³)	W _x (cm ³)	
4.00	2.14	1.18	2.00	30.21	8.00	179.51	275.00	261.90	685.40	713.10	ipe330

Sono state adottate le nuove sezioni:

- trave principale IPE330
- travi secondarie IPE140
- mensola IPE400
- pilastro HEA140

SPINTA DEL VENTO

Una volta assegnate alla struttura le nuove sezioni, essa è stata sottoposta alla spinta orizzontale del vento. Ancora una volta è risultato che la direzione più influente fosse quella in x; in particolare il pilastro più sollecitato era sottoposto ad uno sforzo normale pari a N_{max} = 775,56 kN.

SPINTA SISMICA

Infine si è passati alla verifica della struttura sotto la spinta sismica. Una volta ricavati i dati dalle analisi eseguite per entrambe le direzioni, si è constatato che nella direzione y la Nmax risultasse anche maggiore rispetto a quella del vento: $N_{\text{max}} = 845,27 \text{ kN}$. Il pilastro è stato verificato a pressoflessione secondo questo ultimo risultato, in modo da soddisfare tutte le combinazioni possibili. Si è calcolato:

 $\sigma = N/A \pm M/W$

e verificato che risulti inferiore alla resistenza di progetto del materiale.

N = 845,27 kN

A = 31,42 cmq = 3142 mmq

M = 5,56 kNm = 5560 kNmm

W = 155,4 cmc = 155400 mmc

 σ = (845,27 kN/ 3142 mmq) + (5560 kNmm/ 155400 mmc) =

= 0.27 kN/mmq + 0.0358 kN/mmq = 0.30 kN/mmq

 σ = 0,30 kN/mmq = 300 N/mmq = 300 MPa > 275 MPa = fyk

La sezione non è verificata, pertanto viene considerato un profilato maggiore, **HEA160**.

LEGNO

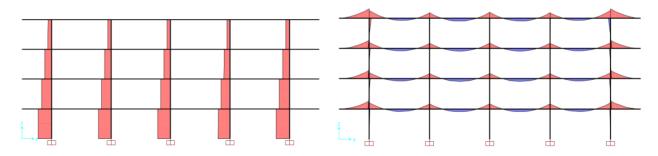
Analogamente al procedimento adottato per le due precedenti tipologie, è stato disegnato il telaio su SAP, definendo un nuovo materiale secondo le caratteristiche del legno adottato (lamellare C24) e sono state assegnate le sezioni corrispondenti per ogni elemento della struttura. Successivamente sono stati distribuiti sulle travi principali i carichi del solaio e della destinazione d'uso, moltiplicati per l'interasse di 3 m.

- qs = 1,26 kN/m

- trave principale 24cm x 40cm

- qp = 4,26 kN/m

- travi secondarie 24cm x 30cm


- qa = 6 kN/m

- mensola 24cm x 40cm

- pilastro 25cm x 30cm

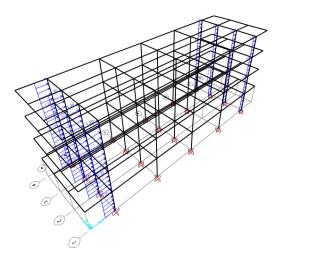
CARICO DELLA NEVE

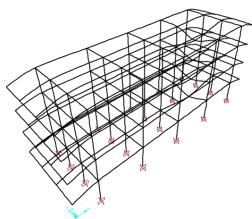
Il passo seguente è stato verificare gli elementi nel caso del sovraccarico apportato dalla neve. Una volta distribuito il peso della neve sulla copertura, sono stati estrapolati i dati su Excel considerando la combinazione di carico SLU+neve.

Ordinando le tabelle, è risultato un N_{max} = 610 kN per i pilastri più sollecitati, maggiore rispetto al precedente: la sezione è comunque verificata.

N	$f_{c0,k}$	k_{mod}	Υm	f_{c0d}	A_{min}	E,005	β	_	λ_{max}	Pmin	b _{min}	b	h _{min}	h	A _{design}	I _{design}
kN	Мра			Мра	cm ²	Мра		m		cm	cm	cm	cm	cm	cm ²	cm ⁴
610	21.00	0.80	1.45	11.59	526.5	8800	2.0	3.00	86.54	6.93	24.02	25.00	21.06	30.00	750	39063

Le mensole sono soggette ad un M_{max} = 114,7 kNm, la sezione è verificata.


M _{max} (kN*m)	f _{m,k} (N/mm ²)	k	γ.	f _d c	b (cm)	h _{min} (cm)	H (cm)	E (N/mm²)	l_x (cm ⁴)	q _e (kN/m)	v _{max} (cm)	V v _{max}	
114.7	24	0.8	1.45	13.24	24	46.54	40	8000	128000	9	0.84	356.11	Sì


Le travi principali più sollecitate sono soggette ad un M_{max} = 99,32 kNm, l'altezza diventa di 45 cm.

M _{max} (KN*m)	f _{m,k} (N/mm ²)	k _{mod}	Υm	f _d (N/mm ²)	b (cm)	h _{min} (cm)	H (cm)
99.32	24.00	0.80	1.45	13.24	24.00	43.30	45.00

SPINTA DEL VENTO

Una volta assegnata la nuova sezione, la struttura viene sottoposta alla spinta orizzontale del vento. Com'è stato evidente anche negli altri casi, la direzione più influente è dimostrata essere quella in x.

SPINTA SISMICA

Si è passati alla verifica della struttura sotto la spinta sismica. Una volta ricavati i dati dalle analisi eseguite per entrambe le direzioni, si è constatato che nella direzione x la Nmax risultasse anche maggiore rispetto a quella del vento: $N_{max} = 587,67$ kN. Il pilastro è stato verificato a pressoflessione secondo questo ultimo risultato, in modo da soddisfare tutte le combinazioni possibili. Considero le sollecitazioni massime:

N= 587,67 kN

M= 20,59 kNm

σc = N/A = 587670 N/ 72000 mmq = 8,16 N/mmq σf = M/W = 20590000 Nmm/ 2880000 mmc= 4,14 N/mmq

Verifico a pressoflessione il pilastro assicurando la relazione:

 $\sigma c/fcd + \sigma f/ffd < 1$

Fcd = 11,59 MPa

Ffd = 13,24 N/mmq

8,16/11,59 + 4,14/13,24 = 0,7 + 0,24 = 0,94 < 1 Il pilastro è verificato.