STRUTTURA RETICOLARE 3D IN ACCIAIO

Objettivo: disegnare il modello tridimensionale di una struttura reticolare in acciaio, vincolarla, caricarla e calcolare N, lo sforzo normale di ogni asta componente la struttura. (con T=0, M=0 perchè le aste reticolari sono soggette solo a trazione e compressione.

Per fare ciò utilizzo SAP2000, un programma che utilizza gli elementi finiti fondato sulla Teoria di Bernulli.

Cylindrical

6

6

2

2

2

2

0,

0,

0,

Cancel

Xdirection

Y direction

Z direction

OK

1_ disegno una griglia cubica:

_file/new model

imposto l'unità di misura in KN,m,C

× **Ouick Grid Lines** Kew Model New Model Initialization Cartesian Project Information Coordinate System Name -Modify/Show Info... GLOBAL Select Template Number of Grid Lines X direction Y direction Z direction 2D Trusses 3D Trusses Beam Blank 2D Grid Only Grid Spacing Xdirection Y direction Z direction Storage Staircases Shells Flat Slab lleW 3D Frames First Grid Line Location

_grid only

considerando il piano cartesiano con Z = gravità

Pipes and

number of grid line (da quante rette deve essere composta la griglia)

Solid

Inderground

X (= quante rette X=n) = 6

Y (=quante rette Y=n) = 6

Z (quante rette Z=n) = 2

Grid spacing (quanto spazio vi è tra le rette che compongono la griglia, quindi volendo fare una griglia cubica X=Y=Z)

X (= spazio tra le rette X=n)= 2 m

Y(= spazio tra le rette Y=n)= 2m

Z(= spazio tra le rette Z=n)= 2m

First grid line location (centro)

X = 0

Y= 0

Z= 0

2_ ogni faccia della griglia dovrà essere controventata

Draw/frame e disegno un cubo controventato

P.S. Per vedere se ho linee sovrapposte seleziono la struttura e

edit /merge duplicates/ok

2_ devo copiare il cubo controventato su tutta la griglia

_seleziono tutte le facce del cubo che voglio copiare tranne quella in comune tra esistente e la copia, per evitare che si creino linee sovrapposte e con il tasto:

Ctrl+c/ Ctrl+v specifico di voler un secondo elemento lungo l'asse X/Y oltre a quello esistente

Adesso la mia griglia è completa.

- 3_ controllo che tutti i nodi siano uniti:
- _seleziono tutta la struttura

Edit/Edit Points/Merge Joints/0,1/ok

- 4_ Assegno I vincoli esterni
- Voglio assegnargli 4 cerniere
- _seleziono i punti in cui voglio inserirle e con:

assign/joint/restraints/ scelgo la cerniera/ok

Ho messo degli appoggi alla struttura.

- 5_ assegno i vincoli interni alle aste
- _seleziono tutta la struttura

Assign/frame/releases (spunta su moment 2-2 e moment 3-3)

SCELGO IL PROFILO DA UTILIZZARE

6_ voglio che la mia struttura sia composta da tubolari in acciaio.

_seleziono tutta la struttura e con il comando:

assign /frame/frame sections / add new property/ PIPE section /gli do un nome e l'ok

APPLICO DELLE FORZE CONCENTRATE

7_ devo prima CREARE la forza che voglio concentrare ai nodi senza considerare il peso proprio:

define/load patterns/chiamo questa forza "F"/self weight mutiplier=0/ add new load pattern/ok

-	Frame Section Properties		
Define Load Patterns			
Load Patterns			Click To:
Load Pattern Name	Type Self Weight	Auto Lateral Load Pattern	Add New Load Pattern
F			Modify Load Pattern
F	DEAD 0	•	Dottom
			Delete Load Pattern
		+	
			Notoo
	I		OK
			Cancel
***		56EC1 configer	-BECL: And BECLC: AND BECLCCI - REBECL CCA - RESECT - CA
	FSEC1 SEC		

$\langle X X X $		NO CONTRACTOR	
		TAL OF ALL AND	
	FSI CI SET		
	FISECI P FISE F		
	OECT	Fish Fish	
		DECT PRO	Part Fact
		F8EC1	
			ESECI
			\sim

8_devo **ASSEGNARE** il carico che ho appena creato:

_dove devo assegnarlo? Ovviamente sulla parte superiore della struttura, quindi la vado a selezionare (lo posso fare direttamente dalla vista top)

Assign/joint load/forces /carico il nome della forze che ho appena creato "F"

Force global Z = - 150 (perche voglio una forza concentrata nei nodi di intensità pari ad 150 kN verso il basso).

Adesso la mia struttura è caricata.

ANALISI GRAFICA DELLA DEFORMATA

Creo una nuova cartella nel computer

9_ click su play e avvio l' analisi

) 🛃 🖶 🖶	∮ � ∕ / ₿●	<u>n</u> e e e e	⊇ 💥 🐲 xy xz yz nv ✓ 🔀 Joint Loads	ဖွာ မေ ကြ 🕂 🖫	∎%• ⊓ ħ₩•nd • ן	Î • •• •
4	t load Caror to P)					
	Case DEAD MODAL	Type Linear Static Modal Linear Static	Status Not Run Not Run Not Run	Action Do Not Run Do Not Run Run	i: Do Not Run Case Show Case erere mesurus ror Cose		
	Analysis Mor	vitor Ontions		Ru Di	h/Do Not Run All		
	C Always SI C Never Sh C Never Sh	how ow 4 seconds			Gel-Alive Run Now Cancel		
 						-	

10_Non avendo considerato il peso proprio la struttura sarà così deformata:

show /deformed shape /

spunto "wire shadow" se voglio vedere contemporaneamente come era e come è la struttura.

Deformed Shape
Case/Combo
Multivalued Options C Envelope (Max or Min) C Step
C Scale Factor
Options
Cancel

_posizionandomi con il mouse in uno dei nodi leggo di quanto si abbassa in quel punto

ANALISI - SFORZO NORMALE

11_ show Forces/Stresses /frame

Me	ember Force/Stress Diagram	m for Frames	
	Case/Combo		
	Case/Combo Nam		
	 Multivalued Options—		
	C Envelope (Range)	
1	€ Step		
	Туре		
	Force	C Stress	
1	Component		
	Axial Force	C Torsion	
1	C Shear 2-2	O Moment 2-2	
	C Shear 3-3	C Moment 3-3	
1			
	Scaling		
	Auto		
	C Scale Factor		
	Options		
	Fill Diagram	ОК	
	C Show Values on Diagram	Cancel	
			4

ANALISI GRAFICA DEGLI SFORZI NORMALI

Per accertarmi che tutto sia OK verifico che i momenti siano nulli!

Member Force/Stress Diagram for Frames	
Case/Combo Case/Combo Name F	
Multivalued Options C Envelope (Range) Step	
Type • Force C Stress	
Component C Axial Force C Torsion C Shear 2-2 C Moment 2-2 C Shear 3-3 Moment 3-3	
C Auto C Scale Factor	
Options © Fill Diagram C Silow values on Diagram C Cancel	

FILE EXCEL

12_Per conoscere con precisione quanto vale lo sforzo Normale su ogni asta che compone la struttura,**SAP** mi fornisce un file Excel molto utile:

Display/show tables/Analysis Results/select load patterns/ seleziono la "F"/ok

A	Assembled Joint Masses										
	File View Format-Filter-Sort Select Options										
	Units: As Noted Assembled Joint Masses										•
						A	ssembled Join	t Masses			
		Joint	lassSourc	U1	U2	tE	ase Reactions				
		Text		KN-s2/m	KN-s2/m	KN-s2/	lement Forces	-Frames			
	\rightarrow	1	MSSSRC1	0,37	0,37	0, E	lement Joint Fo	orces - Frami	BS		=
		2	MSSSRC1	0,24	0,24	0, j	oint Displacem	ents			
		3	MSSSRC1	0,37	0,37	0, J	oint Reactions				H
		4	MSSSRC1	0,55	0,55	0, C	bjects And Ele	ments - Fran	nes		-
		5	MSSSRC1	0,24	0,24	0,24	1 0	0	0		
		6	MSSSRC1	0,55	0,55	0,59	5 0	0	0		
		7	MSSSRC1	0,37	0,37	0,37	' O	0	0		
		8	MSSSRC1	0,37	0,37	0,37	' O	0	0		
		46	MSSSRC1	0,37	0,37	0,37	' O	0	0		
		47	MSSSRC1	0,55	0,55	0,59	5 0	0	0		
		48	MSSSRC1	0,55	0,55	0,59	5 0	0	0		
		49	MSSSRC1	0,37	0,37	0,37	' O	0	0		
		50	MSSSRC1	0,37	0,37	0,37	' O	0	0		
		51	MSSSRC1	0,55	0,55	0,59	5 0	0	0		
		52	MSSSRC1	0,55	0,55	0,55	5 0	0	0		
		53	MSSSRC1	0,37	0,37	0,37	' O	0	0		
		54	MSSSRC1	0,37	0,37	0,37	' O	0	0		-
	Recor	c 📕 🖣	1 ▶ ▶ of	72					Add Tables	Done]

Element Forces - Frames											
File	File View Format-Filter-Sort Select Options										
	Export Current Table	•	To Excel	prces	- Frames			-			
	Display Current Table	۰.	To Access								
	Print Current Table as Text File	L	≥ P KN	V2 KN	V3 KN	T KN-m	M2 KN-m	-			
	Export All Tables	•	257,313	0	0	0	0				
	Display All Tables	•	257,313	0	0	0	0				
	Print All Tables as Text File		257,313	0	0	0	0				
			257,313	0	0	0	0				
	Save Current Table Format to Table Formats File	257,313	0	0	0	0					
	Save All Table Formats to Table Formats File	257,313	0	0	0	0					
	Apply Format from File to Current Table		-134,996	0	0	0	0				
	Apply Format form File to All Tables		-134,996	0	0	0	0				
	Apply Formats from File to All Tables		-134,996	0	0	0	0				
	Add Tables		-134,996	0	0	0	0				
	Remove Current Table		-134,996	0	0	0	0				
			-134,996	0	0	0	0				
	Close Form		-181,408	0	0	0	0				
	5 0,5 F Lir	nStatic	-181,408	0	0	0	0				
	5 1 F Lir	nStatic	-181,408	0	0	0	0				
	5 1,5 F Lir	nStatic	-181,408	0	0	0	0	Ţ			
Ŀ			101 400	0	0		Ì.				
Rei	corc 📕 🔹 1 🕨 🖬 of 1768					Add Tables	Done				

13_ ricavato il foglio Excel lo pulisco eliminando I valori non necessari al calcolo, ciò che mi serve è:

n° numero delle aste/frame/station/P

essendo un cubo considero solo le aste con L=2 m e diagonale pari a L=2,82843m.

14_ ulteriore verifica: tutti i valori dopo P devono essere nulli! Se si posso cancellarli, altrimenti ho sbagliato qualcosa!

Tornando su SAP "click sul tasto della spunta" e con il comando Frame/ Labels posso vedere il numero di ciascuna asta cosi da poterla identificare sul foglio excel.

SIGNIFICATO DELLE VOCI DEL FOGLIO EXCEL:

PRIMA COLONNA: numero delle aste

FRAME: il "nome" delle aste / come vengono individuate su SAP

STATION: mi dice i passi (ogni 50 cm) come se le aste venissero suddivise in segmenti di 50 cm

P: N, quanto vale lo Sforzo Normale ad ogni frame (ogni 50 cm) ma ovviamente, essendo aste reticolari, N sarà costante! Quindi per ogni asta mi interessa solo un valore di N, quello relativo alle aste che compongono la mia reticolare 3D con L=2 (aste normali) e con L=2,82843m (aste diagonali).

seleziono tutti i frame/dati/rimuovi duplicati/espandi selezione/rimuovi duplicati

PULIZIA DELLA TABELLA EXCEL:

_ elimino tutte le colonne inutili e lascio solo: frame /station/outputcase/P

_Ordino station in ordine crescente (espandi selezione)

Elimino i valori che non mi interessano e lascio solo 2 (aste normali) e 2* radice di 2(aste diagonali) = 2,82843 che evidenzio in rosso in modo da riconoscerle subito.

<u>ora ordino P in ordine decrescente (sforzo normale) in questo modo distinguo le aste tese da</u> quelle compresse.

	Α	В	B C D		E	
1	Frame	Station	OutputCase	CaseType	Р	
2	TABLE: EI	ement For	ces - Frames			
3						
1296	2	2,82843	F	LinStatic	257,313	
1297	217	2,82843	F	LinStatic	257,313	
1298	222	2,82843	F	LinStatic	257,313	
1299	516	2,82843	F	LinStatic	257,313	
1300	518	2,82843	F	LinStatic	257,313	
1301	561	2,82843	F	LinStatic	257,313	
1302	562	2,82843	F	LinStatic	257,313	
1303	173	2	F	LinStatic	179,926	
1304	367	2	F	LinStatic	179,926	
1305	423	2	F	LinStatic	179,926	
1306	538	2	F	LinStatic	179,926	
1307	17	2,82843	F	LinStatic	150,946	
1308	21	2,82843	F	LinStatic	150,946	
1309	199	2,82843	F	LinStatic	150,946	
1310	208	2,82843	F	LinStatic	150,946	
1311	448	2,82843	F	LinStatic	150,946	
1312	492	2,82843	F	LinStatic	150,946	
1313	505	2,82843	F	LinStatic	150,946	
1314	548	2,82843	F	LinStatic	150,946	
1315	152	2,82843	F	LinStatic	136,408	
1316	204	2,82843	F	LinStatic	136,408	
1317	294	2,82843	F	LinStatic	136,408	
1318	358	2,82843	F	LinStatic	136,408	
1319	446	2,82843	F	LinStatic	136,408	
1320	491	2,82843	F	LinStatic	136,408	
1321	531	2,82843	F	LinStatic	136,408	
1322	549	2,82843	F	LinStatic	136,408	
1323	22	2,82843	F	LinStatic	131,066	
1324	221	2,82843	F	LinStatic	131,066	
1325	520	2,82843	F	LinStatic	131,066	
1326	571	2,82843	F	LinStatic	131,066	
1327	175	2	F	LinStatic	127,031	
1328	368	2	F	LinStatic	127,031	
1329	410	2	F	LinStatic	127,031	
1330	468	2	F	LinStatic	127,031	

1	Frame	Station	OutputCase	CaseType	P
2	TABLE: EI	ement For	ces - Frames		
3					
1459	521	2,82843	F	LinStatic	-3,021
1460	565	2,82843	F	LinStatic	-3,021
1461	156	2	F	LinStatic	-11,63
1462	174	2	F	LinStatic	-11,63
1463	299	2	F	LinStatic	-11,63
1464	354	2	F	LinStatic	-11,63
1465	369	2	F	LinStatic	-11,63
1466	424	2	F	LinStatic	-11,63
1467	524	2	F	LinStatic	-11,63
1468	537	2	F	LinStatic	-11,63
1469	164	2	F	LinStatic	-12,338
1470	182	2	F	LinStatic	-12,338
1471	307	2	F	LinStatic	-12,338
1472	346	2	F	LinStatic	-12,338
1473	377	2	F	LinStatic	-12,338
1474	416	2	F	LinStatic	-12,338
1475	460	2	F	LinStatic	-12,338
1476	473	2	F	LinStatic	-12,338
1477	159	2	F	LinStatic	-15,756
1478	177	2	F	LinStatic	-15,756
1479	300	2	F	LinStatic	-15,756
1480	359	2	F	LinStatic	-15,756
1481	370	2	F	LinStatic	-15,756
1482	429	2	F	LinStatic	-15,756
1483	530	2	F	LinStatic	-15,756
1484	543	2	F	LinStatic	-15,756
1485	320	2	F	LinStatic	-16,473
1486	333	2	F	LinStatic	-16,473
1487	390	2	F	LinStatic	-16,473
1488	403	2	F	LinStatic	-16,473
1489	326	2,82843	F	LinStatic	-24,656
1490	334	2,82843	F	LinStatic	-24,656
1491	382	2,82843	F	LinStatic	-24,656
1492	389	2,82843	F	LinStatic	-24,656
1493	395	2,82843	F	LinStatic	-24,656

CALCOLO L' AREA MINIMA DA SFORZO NORMALE DI TRAZIONE

_prendo i valori di N>0 (trazione) e li copio nel file excel per il dimensionamento

fornisco alla tabella gli strumenti per calcolare f{d=} f_{yk}/ y_m

_ f_{yk} (coefficiente caratteristico di snervamento) pari a 275 (valore medio)

_ y_m (coefficiente di sicurezza) pari a 1,05.

_II file individua la tensione di progetto f_d e l'area minima A_{min}

 $A_{min} = (N / f_d)^* 10 (perche è in cm)$

	А	В	С	D	E	F	G	
1	1 Calcolo dell'area minima da sforzo normale di trazione							
2								
3	N	fyk	۷m	f _d	A_min	A_design		
4	kN	Mpa		Мра	cm2	cm2		
5	257,313	275,00	1,05	261,90	9,82	10,70		
6	257,313	275,00	1,05	261,90	9,82	10,70		
7	257,313	275,00	1,05	261,90	9,82	10,70		
8	257,313	275,00	1,05	261,90	9,82	10,70		
9	257,313	275,00	1,05	261,90	9,82	10,70		
10	257,313	275,00	1,05	261,90	9,82	10,70		
11	257,313	275,00	1,05	261,90	9,82	10,70		
12	257,313	275,00	1,05	261,90	9,82	10,70		
13	179,926	275,00	1,05	261,90	6,87	7,33		
14	179,926	275,00	1,05	261,90	6,87	7,33		
15	179,926	275,00	1,05	261,90	6,87	7,33		
16	179,926	275,00	1,05	261,90	6,87	7,33		
17	150,946	275,00	1,05	261,90	5,76	6,41		
18	150,946	275,00	1,05	261,90	5,76	6,41		
19	150,946	275,00	1,05	261,90	5,76	6,41		
20	150,946	275,00	1,05	261,90	5,76	6,41		
21	150,946	275,00	1,05	261,90	5,76	6,41		
22	150,946	275,00	1,05	261,90	5,76	6,41		
23	150,946	275,00	1,05	261,90	5,76	6,41		
24	150,946	275,00	1,05	261,90	5,76	6,41		
25	136,408	275,00	1,05	261,90	5,21	5,23		
26	136,408	275,00	1,05	261,90	5,21	5,23		
27	136,408	275,00	1,05	261,90	5,21	5,23		
28	136,408	275,00	1,05	261,90	5,21	5,23		
29	136,408	275,00	1,05	261,90	5,21	5,23		
30	136,408	275,00	1,05	261,90	5,21	5,23		
31	136,408	275,00	1,05	261,90	5,21	5,23		

	Α	В	С	D	E	F	G
32	136,408	275,00	1,05	261,90	5,21	5,23	
33	131.066	275.00	1.05	261.90	5.00	5.23	
34	131.066	275.00	1.05	261 90	5.00	5.23	
35	121.066	275.00	1.05	261,00	5,00	5.23	
30	151,000	275,00	1,05	201,50	5,00	5,25	
36	131,066	275,00	1,05	261,90	5,00	5,23	
37	127,031	275,00	1,05	261,90	4,85	5,23	
38	127,031	275,00	1,05	261,90	4,65	5,23	
39	127,031	275,00	1,05	261,90	4,85	5,23	
40	106 641	275,00	1,05	261,90	4,05	5,23	
41	106,541	275,00	1,05	201,90	4,07	4,14	
42	106,541	275.00	1,05	261,50	4,07	4,14	
43	106,541	275.00	1,05	261,50	4,07	4,14	
44	106 541	275,00	1,05	261,50	4,07	4,14	
40	100,341	275,00	1,05	201,50	4,07	4,14	
46	106,541	275,00	1,05	261,90	4,07	4,14	
47	97,43	275,00	1,05	261,90	3,72	3,73	
48	97,43	275,00	1,05	261,90	3,72	3,73	
49	97,43	275,00	1,05	261,90	3,72	3,73	
50	97,43	275.00	1.05	261.90	3.72	3,73	
51	97.43	275 00	1.05	261.90	3.72	3.73	
52	07.42	275.00	1.05	261,00	3 72	3.73	
52	57,43	275,00	1,05	201,00	3,12	3,73	
53	97,43	275,00	1,05	261,90	3,12	3,73	
54	97,43	275,00	1,05	261,90	3,72	3,73	
55	91,445	275,00	1,05	261,90	3,49	3,60	
56	91,445	275,00	1,05	261,90	3,49	3,60	
57	91,445	275,00	1,05	261,90	3,49	3,60	
58	91,445	275,00	1,05	261,90	3,49	3,60	
59	91,445	275,00	1,05	261,90	3,49	3,60	
60	91,445	275,00	1,05	261,90	3,49	3,60	
61	91,445	275,00	1,05	261,90	3,49	3,60	
02	91,445	275,00	1,05	201,90	3,49	3,00	
63	85,838	275,00	1,05	261,90	3,28	3,60	
64	85.838	275.00	1 1 05	261,90	3 28	3.60	
	A	D		D	E	F	G
65	85,838	275,00	1,05	261,90	3,28	3,60	
66	85,838	275,00	1,05	261,90	3,28	3,60	
67	82,467	275,00	1,05	261,90	3,15	3,25	
68	82,467	275,00	1,05	261,90	3,15	3,25	
69	82.467	275.00	1.05	261.90	3.15	3,25	
70	82 467	275.00	1.05	261.90	3 15	3.25	
71	92,167	275.00	1.05	261,00	3 15	3.25	
70	02,407	275,00	1,05	201,50	3,15	3,25	
12	82,467	275,00	1,05	261,90	3,15	3,25	
73	82,467	275,00	1,05	261,90	3,15	3,25	
74	82,467	275,00	1,05	261,90	3,15	3,25	
75	78,075	275,00	1,05	261,90	2,98	3,07	
76	78,075	275,00	1,05	261,90	2,98	3,07	
77	78,075	275,00	1,05	261,90	2,98	3,07	
78	78,075	275,00	1,05	261,90	2,98	3,07	
79	78,075	275,00	1,05	261,90	2,98	3,07	
80	/8,0/5	275,00	1,05	261,90	2,98	3,07	
81	/8,0/5	275,00	1,05	261,90	2,98	3,07	
82	76,075	275,00	1,05	261,90	2,98	3,07	
83	75,592	275,00	1,05	261,90	2,89	3,07	
04	75,592	275,00	1,05	261,90	2,09	3,07	
05	75,592	275,00	1,05	261,90	2,69	3,07	
87	75,592	275,00	1,05	261,90	2,09	3,07	
07	75,532	275,00	1,05	261,50	2,05	3,07	
89	75,592	275.00	1,05	261.90	2,05	3.07	
90	75 592	275.00	1.05	261.90	2,05	3.07	-
91	70 024	275.00	1.05	261.00	2,03	2.81	
31	70,524	275,00	1,05	201,30	2,11	2,01	
92	70,924	275,00	1,05	261,90	2,/1	2,81	
93	70,924	275,00	1,05	261,90	2,71	2,81	
94	70,924	275,00	1,05	261,90	2,71	2,81	
95	70,924	275,00	1,05	261,90	2,71	2,81	7
96	70,924	275,00	1,05	261,90	2,71	2,81	
97	70.924	275.00	1.05	261.90	2,71	2,81	
-							

	A	В	С	D	E	F	G
98	70,924	275,00	1,05	261,90	2,71	2,81	
99	68,969	275,00	1,05	261,90	2,63	2,81	
100	68,969	275,00	1,05	261,90	2,63	2,81	
101	68,969	275,00	1,05	261,90	2,63	2,81	
102	68,969	275,00	1,05	261,90	2,63	2,81	
103	68.969	275.00	1.05	261.90	2.63	2,81	
104	68.969	275.00	1.05	261.90	2.63	2,81	
105	68,969	275.00	1.05	261.90	2.63	2,81	
106	68,969	275.00	1.05	261.90	2.63	2.81	
107	67.83	275 00	1.05	261.90	2 59	2.81	
108	67.83	275.00	1.05	261,00	2,59	2 81	
109	67.83	275.00	1.05	261,00	2,50	2.81	
110	67.93	275.00	1,05	261,00	2,55	2,01	
111	64 862	275,00	1,05	261,50	2,33	2,61	
112	64,862	275.00	1.05	261,90	2,40	2.54	
113	64 862	275.00	1.05	261,90	2.48	2.54	
114	64,862	275.00	1.05	261.90	2.48	2.54	
115	64,862	275.00	1.05	261.90	2.48	2.54	
116	64,862	275,00	1,05	261,90	2,48	2,54	
117	64,862	275,00	1,05	261,90	2,48	2,54	
118	64,862	275,00	1,05	261,90	2,48	2,54	
119	54,522	275,00	1,05	261,90	2,08	2,54	
120	54,522	275,00	1,05	261,90	2,08	2,54	
121	54,522	275,00	1,05	261,90	2,08	2,54	
122	54,522	275,00	1,05	261,90	2,08	2,54	
123	54,522	275,00	1,05	261,90	2,08	2,54	
124	54,522	275,00	1,05	261,90	2,08	2,54	
125	54,522	275,00	1,05	261,90	2,08	2,54	
126	54,522	275,00	1,05	261,90	2,08	2,54	
127	39,279	275,00	1,05	261,90	1,50	2,54	
128	39,279	275,00	1,05	261,90	1,50	2,54	
129	39,279	275,00	1,05	261,90	1,50	2,54	
1	А	В	С		F	F	G
130	39.279	275.00	1.05	261.90	1.50	2.54	
131	39,279	275,00	1,05	261,90	1,50	2,54	
132	39,279	275,00	1,05	261,90	1,50	2,54	
133	39,279	275,00	1,05	261,90	1,50	2,54	
134	39,279	275,00	1,05	261,90	1,50	2,54	
135	38,955	275,00	1,05	261,90	1,49	2,54	
136	38,955	275,00	1,05	261,90	1,49	2,54	
137	38,955	275,00	1,05	261,90	1,49	2,54	
138	38,955	275,00	1,05	261,90	1,49	2,54	
139	38,955	275,00	1,05	261,90	1,49	2,54	
140	38,955	275,00	1,05	261,90	1,49	2,54	
141	38,955	275,00	1,05	261,90	1,49	2,54	

138	38,955	275,00	1,05	261,90	1,49	2,54	
139	38,955	275,00	1,05	261,90	1,49	2,54	
140	38,955	275,00	1,05	261,90	1,49	2,54	
141	38,955	275,00	1,05	261,90	1,49	2,54	
142	38,955	275,00	1,05	261,90	1,49	2,54	
143	36,304	275,00	1,05	261,90	1,39	2,54	
144	36,304	275,00	1,05	261,90	1,39	2,54	
145	36,304	275,00	1,05	261,90	1,39	2,54	
146	36,304	275,00	1,05	261,90	1,39	2,54	
147	36,304	275,00	1,05	261,90	1,39	2,54	
148	36,304	275,00	1,05	261,90	1,39	2,54	
149	36,304	275,00	1,05	261,90	1,39	2,54	
150	36,304	275,00	1,05	261,90	1,39	2,54	
151	14,876	275,00	1,05	261,90	0,57	2,54	
152	14,876	275,00	1,05	261,90	0,57	2,54	
153	14,876	275,00	1,05	261,90	0,57	2,54	
154	14,876	275,00	1,05	261,90	0,57	2,54	
155	14,876	275,00	1,05	261,90	0,57	2,54	
156	14,876	275,00	1,05	261,90	0,57	2,54	
157	14,876	275,00	1,05	261,90	0,57	2,54	
158	14,876	275,00	1,05	261,90	0,57	2,54	
159	0,209	275,00	1,05	261,90	0,01	2,54	
160	0,209	275,00	1,05	261,90	0,01	2,54	
161	0,209	275,00	1,05	261,90	0,01	2,54	
162	0,209	275,00	1,05	261,90	0,01	2,54	
163	0,209	275,00	1,05	261,90	0,01	2,54	
				-	-		

162	0,209	275,00	1,05	261,90	0,01	2,54	
163	0,209	275,00	1,05	261,90	0,01	2,54	
164	0,209	275,00	1,05	261,90	0,01	2,54	
165	0,209	275,00	1,05	261,90	0,01	2,54	
166	0,209	275,00	1,05	261,90	0,01	2,54	
167							

p.s. nota che l' area minima è inversamente proporzionale alla tensione!

Consultando le tabelle dei valori standard dei profili metallici in produzione <u>INGEGNERIZZO</u> ricercando il valore dell' area **A_dsign** disponibile immediatamente maggiore di **A_min** che il foglio Excel ha ricavato (lo faccio per ogni singola asta).

_Dopo averle ordinate in ordine decrescente individuo subito l'asta maggiormente sollecitata e il valore dello sforzo normale maggiore, cosi da poter scegliere il profilo adatto a tutte le aste sottoposte a trazione che compongono la reticolare spaziale:

	A	В	С	D	E	F
1	0	alcolo dell'a	area minii	ma da sforzo) normale di tra	zione
2						
3	N	fyk	V m	f _d	A_min	A_design
4	kN	Мра		Мра	cm2	cm2
5	257,313	275,00	1,05	261,90	9,82	10,70
6	257,313	275,00	1,05	261,90	9,82	10,70
7	257,313	275,00	1,05	261,90	9,82	10,70
8	257,313	275,00	1,05	261,90	9,82	10,70
9	257,313	275,00	1,05	261,90	9,82	10,70
10	257,313	275,00	1,05	261,90	9,82	10,70
11	257,313	275,00	1,05	261,90	9,82	10,70
12	257,313	275,00	1,05	261,90	9,82	10,70
13	179,926	275,00	1,05	261,90	6,87	7,33
14	179,926	275,00	1,05	261,90	6,87	7,33
15	179,926	275,00	1,05	261,90	6,87	7,33
16	179,926	275,00	1,05	261,90	6,87	7,33
17	150,946	275,00	1,05	261,90	5,76	6,41
18	150,946	275,00	1,05	261,90	5,76	6,41
19	150,946	275,00	1,05	261,90	5,76	6,41
20	150,946	275,00	1,05	261,90	5,76	6,41
21	150,946	275,00	1,05	261,90	5,76	6,41
22	150,946	275,00	1,05	261,90	5,76	6,41
23	150,946	275,00	1,05	261,90	5,76	6,41
24	150,946	275,00	1,05	261,90	5,76	6,41
25	136,408	275,00	1,05	261,90	5,21	5,23
26	136,408	275,00	1,05	261,90	5,21	5,23
27	136,408	275,00	1,05	261,90	5,21	5,23
28	136,408	275,00	1,05	261,90	5,21	5,23
29	136,408	275,00	1,05	261,90	5,21	5,23
30	136,408	275,00	1,05	261,90	5,21	5,23

	d x s mm	Peso kg/m	Sezione di passaggio cm2	Sezione metallica cm2	Momento di inerzia J = cm4	Modulo di resistenza W = cm3	Raggio di inerzia i = cm
	33,7 x 2,6	2,010	6,380	2,540	3,090	1,840	1,100
	33,7 x 2,9	2,220	6,110	2,810	3,360	1,990	1,090
	33,7 x 3,2	2,420	5,850	3,070	3,600	2,140	1,080
	42,4 x 2,6	2,570	10,90	3,250	6,460	3,050	1,410
	42,4 x 2,9	2,840	10,50	3,600	7,060	3,330	1,400
	42,4 x 3,2	3,110	10,20	3,940	7,620	3,590	1,390
	48,3 x 2,6	2,950	14,60	3,730	9,780	4,050	1,620
	48,3 x 2,9	3,270	14,20	4,140	10,70	4,430	1,610
	48,3 x 3,2	3,590	13,80	4,530	11,60	4,800	1,600
	60,3 x 2,9	4,140	23,30	5,230	21,60	7,160	2,030
	60,3 x 3,2	4,540	22,80	5,740	23,50	7,780	2,020
	60,3 x 3,6	5,070	22,10	6,410	25,90	8,580	2,010
	76,1 x 2,6	4,750	39,50	6,000	40,60	10,70	2,600
	76,1 x 2,9	5,280	38,80	6,670	44,70	11,80	2,590
	76,1 x 3,2	5,800	38,20	7,330	48,80	12,80	2,580
	76,1 x 3,6	6,490	37,30	8,200	54,00	14,20	2,570
	88,9 x 2,6	5,570	55,00	7,050	65,70	14,80	3,050
	88,9 x 3,2	6,810	53,50	8,620	79,20	17,80	3,030
	88,9 x 3,6	7,630	52,40	9,650	87,90	19,80	3,020
ĺ	88,9 x 4,0	8,430	51,40	10,70	96,30	21,70	3,000
1		0.000	00.40	10 50	100.0		0.000

Per le aste a trazione vado a scegliere il profilo: A =10,70cm² ; dxs= 88,9 X 4,0mm

VERIFICA:

<mark>σ<fd = N/A<fd</mark>

Considerata l'asta più sollecitata: N= 257,313KN

N/A =257313/ 1070 = 261,90 N/mm²

fd = 261,90MPa

ok : N/A < fd =240,47 N/mm² < 261,90MPa è VERIFICATA!

COMPRESSIONE

Per le aste compresse si devono considerare alcuni concetti fondamentali:

-la natura dei carichi di spostare il loro punto di applicazione nello stesso verso della forza che esercitano.

-Quando N raggiunge il valore dello sforzo normale critico euleriano si innesca improvvisamente una crisi: l'asta sbanda stantaneamente, o meglio si flette intorno all' asse della sezione con raggio minimo d' inerziza $N=N_{crit}$

 N_{crit} = 3,14 $EI_{min}/(\beta I)^2$ (β coefficiente che dipende dalle condizioni di vincolo nella direzione dello sbandamento)

N_{crit}= 3,14 El_{min}/(βl)²

OSSERVAZIONI:

- N_{crit e} 3,14 El_{min sono direttamente proporzionali quindi se} I_{min>>>} ne segue che N_{crit>>>}
- devo quindi agire sulla lunghezza dell' asta, NON POSSO FARLA TROPPO SNELLA!
- $\beta = I_0$ distanza tra i 2 punti di flesso 7 lunghezza libera di inflessione
- RAGGIO D' INERZIA:

$$I_{min}/A = L^{4/}L^2 = L^{2=}\sqrt{L^2} = C$$

 $\sqrt{(I_{min}/A)} = L = \rho_{min}$

 $con\,\rho_{min}\,raggio\,\,d'\,inerzia\,\,minimo$

 $I_{min}/A = \rho_{min}^2$ segue $\frac{I_{min} = A \rho_{min}^2}{P_{min}^2}$

Sostituendo a $N_{crit}=3,14 E I_{min}/(\beta I)^2$

$$N_{crit} = 3,14^2 EA \rho_{min}^2 / (\beta I)^2$$

B=l₀

 N_{crit} = 3,14² EA $\rho_{min}^2 / (I_0)^2$ =3,14 EA/(I_0 / ρ_{min})= 3,14 EA/ λ

dove λ = SNELLEZZA =rapport tra l' altezza e la sezione.

Quindi N_{crit}=3,14 EA/ λ

Si noti che la snellezza **(λ)** è inversamente proporzionale a N_{crit} , vale a dire che meno l' asta è snella **e** più è grande N_{crit} (quindi è irragiungibile!!).

IL PROGETTO SI DIVIDE IN 3 FASI:

1 Calcolo dell'area minima da sforzo di compressione (resistenza materiale)

_prendo ora i valori di N<0 (compressione) e li incollo nel file Excel per il dimensionamento delle aste a compressione

_ Devo trovare **I' A_{min} e I_{min}**

dove: $A_{min} = N/f_{yd}$

quindi la tabella deve ricavarmi la tensione di progetto \mathbf{f}_{yd}

_Gli fornisco i dati di cui ha bisogno:

 f_{yk} (coefficiente caratteristico di snervamento) pari a 275 (valore medio)

 \mathbf{y}_{m} (coefficiente di sicurezza) pari a 1,05.

La tabella può ora ricavare $f_{yd} = f_{yk} / y_m$ e di conseguenza A_{min}

	A	В		С	D	E					
	Calcolo dell'area minima da sforzo di compressione										
1	(resistenza	materiale)									
2	N	fyk		Υ _{m0}	fyd	A_min					
3	kN	N/mm2			N/mm2	cm2					
4											
5	-3,021	275,00		1,05	261,90	0,12					
6	-3,021	275,00		1,05	261,90	0,12					
7	-3,021	275,00		1,05	261,90	0,12					
8	-3,021	275,00		1,05	261,90	0,12					
9	-11,63	275,00		1,05	261,90	0,44					
10	-11,63	275,00		1,05	261,90	0,44					
11	-11,63	275,00		1,05	261,90	0,44					
12	-11,63	275,00		1,05	261,90	0,44					
13	-11,63	275,00		1,05	261,90	0,44					
14	-11,63	275,00		1,05	261,90	0,44					
15	-11,63	275,00		1,05	261,90	0,44					
16	-11,63	275,00		1,05	261,90	0,44					
17	-12,338	275,00		1,05	261,90	0,47					
18	-12,338	275,00		1,05	261,90	0,47					
19	-12,338	275,00		1,05	261,90	0,47					
20	-12,338	275,00		1,05	261,90	0,47					
21	-12,338	275,00		1,05	261,90	0,47					
22	-12,338	275,00		1,05	261,90	0,47					
23	-12,338	275,00		1,05	261,90	0,47					
24	-12,338	275,00		1,05	261,90	0,47					
25	-15,756	275,00		1,05	261,90	0,60					
26	-15,756	275,00		1,05	261,90	0,60					
27	-15,756	275,00		1,05	261,90	0,60					
28	-15,756	275,00		1,05	261,90	0,60					
29	-15,756	275,00		1,05	261,90	0,60					
30	-15,756	275,00		1,05	261,90	0,60					
31	-15,756	275,00		1,05	261,90	0,60					
32	-15,756	275,00		1,05	261,90	0,60					
33	-16,473	275,00		1,05	261,90	0,63					
N.	I ▶ N acc	tiaio trazion	e	acciai	o compres	sione 🖉					

2 Calcolo dell'inerzia minima per sforzo di compressione (instabilità euleriana)

ordiniamo i valori rispetto ad N questa volta in modo crescente tale che mi trovo l' asta maggiormente compressa in alto.

Dato che le aste <u>compresse troppo snelle</u> potrebbero essere soggette ai **fenomeni di instabilità**, per evitare che questo accada il foglio deve calcolare l'inerzia e il suo raggio attraverso alcuni dati che vado ad inserire:

E = 210000

 $\beta = 1,00$

I = lunghezza delle aste (confrontando il file Excel ricavato da SAP).

Calcolo dell'inerzia minima per sforzo di compressione (instabilità euleriana)										
Е	beta	I.	Lam*	rho_min I_min						
Мра		m		cm	cm4					
210000,00	1,00	2,83	88,96	3,18	228					
210000,00	1,00	2,83	88,96	3,18	228					
210000,00	1,00	2,83	88,96	3,18	228					
210000.00	1,00	2,83	88,96	3,18	228					
210000.00	1.00	2.83	88,96	3.18	228					
210000,00	1,00	2,83	88,96	3,18	228					
210000,00	1,00	2,83	88,96	3,18	228					
210000,00	1,00	2,83	88,96	3,18	228					
210000.00	1.00	2.00	88,96	2.25	99					
210000,00	1,00	2,00	88,96	2,25	99					
210000,00	1,00	2,00	88,96	2,25	99					
210000,00	1,00	2,00	88,96	2,25	99					
210000,00	1,00	2,00	88,96	2,25	63					
210000,00	1,00	2,00	88,96	2,25	63					
210000,00	1,00	2,00	88,96	2,25	63					
210000,00	1,00	2,00	88,96	2,25	63					
210000,00	1,00	2,00	88,96	2,25	57					
210000,00	1,00	2,00	88,96	2,25	57					
210000,00	1,00	2,00	88,96	2,25	57					
210000,00	1,00	2,00	88,96	2,25	57					
210000,00	1,00	2,00	88,96	2,25	57					
210000,00	1,00	2,00	88,96	2,25	57					
210000,00	1,00	2,00	88,96	2,25	57					
210000,00	1,00	2,00	88,96	2,25	57					
210000,00	1,00	2,00	88,96	2,25	48					
210000,00	1,00	2,00	88,96	2,25	48					
210000,00	1,00	2,00	88,96	2,25	48					
210000,00	1,00	2,00	88,96	2,25	48					
210000 00	1.00	2.02	00 00	2 10	00					

<u>3_Ingegnerizzazione sezione e verifica snellezza per una membratura principale (< 200)</u>

Analizzo l'asta diagonale e l'asta normale più caricate (rosso /giallo) e ingegnerizzo confrontando le tabelle:

A_design > A_min; I_design > I_min; ρ_design del profilo;

Devo conoscere la snellezza SNELLEZZA λ

confrontando i valori ottenuti a trazione e a compressione, si nota che l' **A_min** a compressione(22,57 cm²) \dot{e} > di quella a trazione (9,82 cm²) quindi sarà questa quella che vado ad ingegnerizzare:

scelgo un profilato a sezione circolare dxs = 168,3 x 5,0 mm.

	Α	В	С	D	E	F	G	Н		J	K	L	М	Ν	0	Р
	Calcolo dell'area minima da sforzo di compressione				essione	Calcolo dell'inerzia minima per sforzo di compressione (instabilità euleriana) Ingegnerizzazione sezione e verifica snellezza per un									ezza per una	
1	(resistenza	materiale)					membratura principale (< 200)									
2	N	fyk	Y m0	fyd	A_min	E	beta	l I	Lam*	rho_min	I_min	A_design	I_design	rho_min	lam	
3	kN	N/mm2		N/mm2	cm2	Мра		m		cm	cm4	cm2	cm4	cm	snellezza	profilo scelto
4																
5	-591,215	275,00	1,05	261,90	22,57	210000,00	1,00	2,83	88,96	3,18	228	47,00	308,00	9,46	29,90	168,3 x 5,0
6	-591,215	275,00	1,05	261,90	22,57	210000,00	1,00	2,83	88,96	3,18	228					
7	-591,215	275,00	1,05	261,90	22,57	210000,00	1,00	2,83	88,96	3,18	228					
8	-591,215	275,00	1,05	261,90	22,57	210000,00	1,00	2,83	88,96	3,18	228					
9	-591,215	275,00	1,05	261,90	22,57	210000,00	1,00	2,83	88,96	3,18	228					
10	-591,215	275,00	1,05	261,90	22,57	210000,00	1,00	2,83	88,96	3,18	228					
11	-591,215	275,00	1,05	261,90	22,57	210000,00	1,00	2,83	88,96	3,18	228					
12	-591,215	275,00	1,05	261,90	22,57	210000,00	1,00	2,83	88,96	3,18	228					
13	-513,896	275,00	1,05	261,90	19,62	210000,00	1,00	2,00	88,96	2,25	99	25,7	102	5,78	34,60	
14	-513,896	275,00	1,05	261,90	19,62	210000,00	1,00	2,00	88,96	2,25	99					
15	-513,896	275,00	1,05	261,90	19,62	210000,00	1,00	2,00	88,96	2,25	99					
16	-513,896	275,00	1,05	261,90	19,62	210000,00	1,00	2,00	88,96	2,25	99					
17	-327,503	275,00	1,05	261,90	12,50	210000,00	1,00	2,00	88,96	2,25	63					
18	-327,503	275,00	1,05	261,90	12,50	210000,00	1,00	2,00	88,96	2,25	63					
19	-327,503	275,00	1,05	261,90	12,50	210000,00	1,00	2,00	88,96	2,25	63					
20	-327,503	275,00	1,05	261,90	12,50	210000,00	1,00	2,00	88,96	2,25	63					
21	-295,827	275,00	1,05	261,90	11,30	210000,00	1,00	2,00	88,96	2,25	57					
22	-295,827	275,00	1,05	261,90	11,30	210000,00	1,00	2,00	88,96	2,25	57					
23	-295,827	275,00	1,05	261,90	11,30	210000,00	1,00	2,00	88,96	2,25	57					
24	-295,827	275,00	1,05	261,90	11,30	210000,00	1,00	2,00	88,96	2,25	57					

VERIFICA

<mark>σ<fd = N/A<fd</mark>

Considerata l'asta più sollecitata(5): N= -115,097KN

N/A = -591215/ 4700= -125,79 N/mm²

fd = 261,90MPa

ok : N/A < fd =- 125,79 N/mm² < 261,90MPa è VERIFICATA!

VERIFICO LA SNELLEZZA

La snellezza **λ per essere verificata deve essere≤ 200**

λ≤ 200

considerando sempre la stessa asta(5):

La sezione è verificata in quanto $\lambda = 29,90$ la sua snellezza non supera il 200!