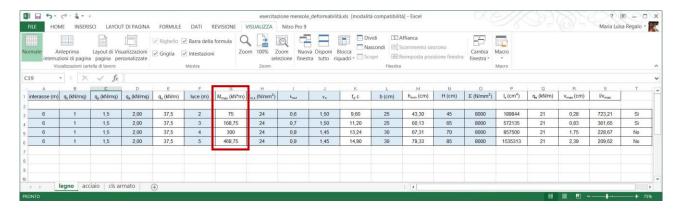
Commento alla terza esercitazione

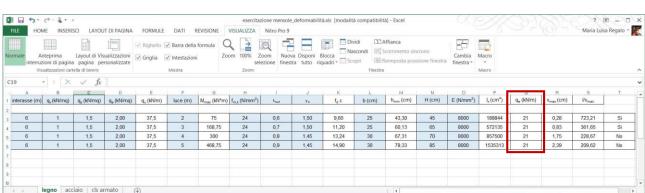
Nella sezione *Download* del Portale di Meccanica si può trovare il file Excel "esercitazione mensole_deformabilità", che consente il dimensionamento della sezione di una trave a sbalzo nei tre materiali: legno, acciaio e cemento armato.


A B C O E F G H I J K L M N O P Q R S T Interasse (m) Q ₀ (040/mq) Q ₀	Normale	interruzi	steprima ioni di pagina salizzazioni carte	pagina per	ualizzazioni		Barra della Intestazion Mostra			com ezione f	Nuova Disponi B linestra tutto rio		scondi 🖹	Affianca Scorrimento sin Reimposta posi		Cambia I	Macro Macro				
	C19		- X	√ fx																	
6 1 1,5 2,00 37.5 2 75 24 0,8 1,50 9,60 25 43,30 45 8000 189844 21 0,28 723,21 Si 6 1 1,5 2,00 37.5 3 168,75 24 0,7 1,50 11,20 25 60,13 65 8000 572135 21 0,83 361,65 Si 6 1 1,5 2,00 37.5 4 300 24 0,8 1,45 13,24 30 67,31 70 8000 857600 21 1,75 228,67 No 6 1 1,5 2,00 37.5 5 468,75 24 0,9 1,45 14,90 30 79,33 85 8000 1535313 21 2,39 209,62 No		A	8	С	D	E	F	G	н	1	J	K	L	M	N	. 0	Р	Q	B	S	T
6 1 1,6 2,00 37,5 3 168,75 24 0,7 1,50 11,20 25 60,13 65 8000 572135 21 0,83 361,65 SI 6 1 1,5 2,00 37,5 4 300 24 0,8 1,45 13,24 30 67,31 70 8000 857600 21 1,75 228,67 No 6 1 1,5 2,00 37,5 5 468,75 24 0,9 1,45 14,90 30 79,33 85 8000 1535313 21 2,39 209,62 No	1 intera	sse (m)	q, (kN/mq)	q _p (kN/mq)	q _a (kN/mq)	q _u (kN/m)	luce (m)	M _{max} (kN*m)	f _{m,k} (N/mm ²)	Knet	٧.	f _o c	b (cm)	h _{min} (cm)	H (cm)	E (N/mm²)	l_x (cm ⁴)	q _e (kN/m)	V _{max} (cm)	I/V _{max}	
6 1 1,6 2,00 37,5 3 168,75 24 0,7 1,50 11,20 25 60,13 65 8000 572135 21 0,83 361,65 SI 6 1 1,5 2,00 37,5 4 300 24 0,8 1,45 13,24 30 67,31 70 8000 857600 21 1,75 228,67 No 6 1 1,5 2,00 37,5 5 468,75 24 0,9 1,45 14,90 30 79,33 85 8000 1535313 21 2,39 209,62 No	2																				
6 1 1,5 2,00 37,5 4 300 24 0,8 1,45 13,24 30 67,31 70 8000 857800 21 1,75 228,67 No 6 1 1,5 2,00 37,5 5 468,75 24 0,9 1,45 14,90 30 79,33 85 8000 1535313 21 2,39 209,62 No	3	6	1	1,5	2,00	37,5	2	75	24	0,6	1,50	9,60	25	43,30	45	8000	189844	21	0,28	723,21	Si
6 1 1,6 2,00 37.5 5 468.75 24 0,9 1,45 14,90 30 79,33 86 8000 1535313 21 2,39 209.62 No	10	6	1	1,5	2,00	37,5	3	168,75	24	0,7	1,50	11,20	25	60,13	65	8000	572135	21	0,83	361,65	Si
6 1 1,6 2,00 37,5 5 468,75 24 0,9 1,45 14,90 30 79,33 85 8000 1535313 21 2,39 209,62 No	1	6	1	1,5	2.00	37.5	4	300	24	0.8	1,45	13.24	30	67.31	70	8000	857500	21	1.75	228.67	No
		6	1				5	468.75	24		1.45	14.90	30		85	8000	1535313	21	2.39		No
	7 8 9 0 0	1	egno acc	iaio cls ar	mato	+								1 4							

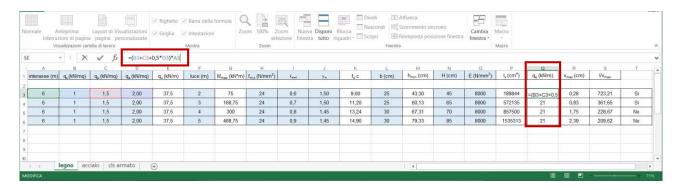
Il metodo di progetto è inizialmente lo stesso che è stato utilizzato nella prima esercitazione, quindi le prime colonne contengono informazioni note che consentono di uguagliare la tensione massima nella trave (σ_{max}) a quella di progetto del materiale (f_a), ricavando così l'altezza minima, nel caso del legno e del cemento armato, o il modulo di resistenza a flessione minimo, nel caso dell'acciaio.

lormale in	Ant	eprima oni di pagina alizzazioni cart	pagina per	ualizzazioni	✓ Righello				oom Nu	iova Disponi lestra tutto rie	siocca	scondi 🖹	Affianca Scorrimento sin Reimposta posi a		finestra *	Macro Macro					,
C19	*	1 ×	√ f _x																		,
- A		В	С	D	E	F	G	н	- 1	J	K	L	М	N	0	р	Q	B	S	т	
interass	se (m)	q, (kN/mq)	q _p (kN/mq)	q _a (kN/mq)	q _u (kN/m)	luce (m)	M _{max} (kN*	m) f _{m,k} (N/mm ²)	Kuat	٧	f _d C	b (cm)	h _{min} (cm)	H (cm)	E (N/mm²)	l _x (cm ⁴)	q _e (kN/m)	v _{max} (cm)	I/V _{max}		
6		1	1,5	2,00	37,5	2	75	24	0,6	1,50	9,60	25	43,30	45	8000	189844	21	0,28	723,21	Si	7
6		1	1,5	2,00	37,5	3	168,75	24	0,7	1,50	11,20	25	60,13	65	8000	572135	21	0,83	361,65	Si	7
6		1	1,5	2,00	37,5	4	300	24	0,8	1,45	13,24	30	67,31	70	8000	857500	21	1,75	228,67	No	1
6		1	1,5	2,00	37,5	5	468,75	24	0,9	1,45	14,90	30	79,33	85	8000	1535313	21	2,39	209,62	No	1
															"						
4 2	le	gno acc	iaio cls ar	mato	(+)								1 4								Þ
RONTO																	#	II II -		-+ 7	5%

L'unica differenza che incontriamo in queste prime colonne, rispetto alla prima esercitazione, è il valore del momento massimo, che non è più quello di una trave doppiamente appoggiata. Infatti ricordiamo che per l'esercitazione è necessario tenere in conto che lo schema statico di riferimento è quello della mensola. Quindi il momento massimo, in corrispondenza della sezione di incastro varrà:


$$M_{max} = \frac{q_u l^2}{2}$$

Nel caso della mensola, dopo aver dimensionato la sezione, è necessario effettuare la verifica a deformabilità controllando l'abbassamento massimo dell'elemento strutturale in rapporto alla sua luce.


Il procedimento, che è uguale in tutte e tre le tecnologie, si effettua allo SLE (Stato Limite di Esercizio) poiché la verifica è finalizzata a controllare che non vi siano spostamenti e deformazioni che possano limitare l'uso della costruzione, la sua efficienza e il suo aspetto.

A tal motivo i carichi incidenti sulla struttura vengono ricombinati seguendo la combinazione frequente, generalmente impiegata per gli stati limite di esercizio reversibili:

 $q_e = (G_1 \; + \; G_2 \; + \; \psi_{11} \times Q_1) \times i$

Nel caso del legno, che è un materiale leggero, il peso proprio della trave viene trascurato, come si può vedere dalla figura sottostante.

Questo discorso non vale nel caso dell'acciaio e del cemento armato in cui il peso ha un contributo significativo.

Nell'acciaio, dopo aver trovato il modulo di resistenza a flessione minimo (W_{min}) , per ingegnerizzare la sezione si inserisce nella colonna successiva il valore del momento di inerzia I_x del profilo, che ha come modulo di resistenza a flessione W_x un valore maggiore rispetto a quello trovato.

Avendo così scelto il profilo si potrà inserire nel foglio di calcolo anche il suo peso in kN/m, che si trova nelle tabelle dei profilati, facendo attenzione all'unità di misura, che spesso è in kg/m. Nella figura sottostante possiamo notare come il peso venga aggiunto nel calcolo del carico totale.

	intern	Anteprima izioni di pagina isualizzazioni cart	pagina per	ualizzazioni	✓ Righello		ormula Z	Doom 100% 2	coom Nuo ezione fines	wa Disponi Bi tra tutto riq	Di Na locca uadri - So	manual mite	ffianca corrimento sin eimposta posi	icrono izione finestra	Cambia finestra *	Macro Macro					^
SE		- X	✓ fx	=(B3+C3+	+ 0,5 *D3)*A3+	L3				_	_										٧
45	C	D	E	F	G	н	ř.	1	V		<u>, 3</u>	N	0	Р	0	B	S	T	Ü	v	1
1	q _p (kN/mq)	q _a (kN/mq)	q, (kN/m)	luce (m)	M _{max} (kN*m)	f _{s.k} (Nimm²)	f _a (Nimmi)	W _{sonia} (cm ³)	I _x (cm ⁴)	peso (kN/m)	q. (kN/m)	E (N/mm²)	v _{max} (cm)	I/v _{max}							
2																					
3	2,5	3,00	61,2	3,5	374,85	235	204,35	1834,37	23130	0,66	03)*A3+L3	210000	1,300	269,257	Si						
4	3	2,00	75,6	3,5	463,05	235	204,35	2265,99	23130	0,66	44,66	210000	1,725	202,937	No						
5	2	2,00	79,5	5	993,75	275	239,13	4155,68	48200	0,91	45,91	210000	3,543	141,104	No						
6	2	4,00	92,8	5	1160	275	239,13	4850.91	67120	0.11	48.11	210000	2,667	187,506	No						
7																					
8																					
9																					
10																					w
	4 8	legno acc	iaio els ar	mato	+								4								F
																				-+	

Nel cemento armato ricordiamo che il peso proprio dell'elemento strutturale veniva calcolato anche nella prima esercitazione, poiché era necessario verificare allo stato limite ultimo (SLU) che la sezione scelta fosse idonea a sopportare tutti i pesi gravanti su di sé anche dopo aver aggiunto il peso proprio. Dopo questa verifica, l'informazione relativa al peso verrà riutilizzata per calcolare il carico totale q_e .

ormale int		ima Layou di pagina pag	ut di Visualizzazio ina personalizza	ni 🗸 Griati			S	Zoom Nuor elezione fines	va Disponi Blotra tutto riqua	cca Nasco	ndi 🔯 Scorri	mento sincrono posta posizione fii	Cambi nestra finestra	ia Macro					
Ε	Visualizz	azioni cartella di l		C3+0,5*D3)	Mostra *AZLT:		Zoom				Finestra			Macro					
4 .	J	K	L -(OST	M	N N	0	P	Q	R	S	Т	- 0	V	w	X	Y	Z	AA	
f _{ck} (N	/mm²)	f _{cd} (N/mm ²)	β	٢	b (cm)	h _u (cm)	δ (cm)	H _{min} (cm)	H (cm)	area (m²)	peso (kN/m)	q _e	E (N/mm²)	I _x (cm ⁴)	v _{max} (cm)	I/v _{max}			
4	10	26,67	0,51	2,18	30	35,18	5	40,18	50	0,15	3,75	=(B3+C3+0,5	21000	312500	0,48	622,22	Sì		
40	,00	22,67	0,46	2,26	30,00	41,50	5,00	46,50	verificata]	
- 4	10	26,67	0,51	2,18	40	53,16	5	58,16	70	0,28	7,00	55,00	21000	1143333	0,73	545,68	Sì	1	
40	,00	22,67	0,46	2,26	40,00	62,98	5,00	67,98	verificata									-	
4	15	30,00	0,53	2,13	50	61,27	5	66,27	80	0,40	10,00	70,00	21000	2133333	1,22	409,60	Sì	1	
45	,00	25,50	0,49	2,20	50,00	72,93	5,00	77,93	verificata									1	
4 6	legn	o acciaio	cls armato	(+)								1)
DIFICA															m			- + 10	00

Infine per calcolare lo spostamento sono necessarie altre due informazioni; una relativa al materiale e l'altra relativa alla geometria. Stiamo parlando del modulo elastico E e del momento di Inerzia I_x (che nel caso dell'acciaio abbiamo già menzionato).

FIL	Е НО	ME INSERI		T DI PAGINA	FORMULE	DATI F	REVISIONE	VISUALIZZA	Nitro Pro	9									Maria Luis	a Regalo •	4
ene	iale A	Inteprima zioni di pagina sualizzazioni cari		ualizzazioni	✓ Righello				oom N	luova Disponi B nestra tutto rio	locca	ondi 📳	Affianca Scorrimento sin Reimposta posi		Cambia finestra *	Macro Macro					
9		- : X	√ fx																		
	A	В	С	D	E	F	6	н	i i	J	К	L	М	N	0	p	- 0	В	S	т	
nt	erasse (m)	q, (kN/mq)	q _o (kN/mq)	q, (kN/mq)	q _u (kN/m)	luce (m)	M _{max} (kN*m)	f _{m,k} (N/mm ²)	Knet	Y-	f _d c	b (cm)	h _{min} (cm)	H (cm)	E (N/mm²)	l _x (cm ⁴)	q. (kN/m)	v _{max} (cm)	I/v _{max}		
							10.000														
	6	1	1,5	2,00	37,5	2	75	24	0,6	1,50	9,60	25	43,30	45	8000	189844	21	0,28	723,21	Sì	
	6	1	1,5	2,00	37,5	3	168,75	24	0,7	1,50	11,20	25	60,13	65	8000	572135	21	0,83	361,65	Si	
	6	1	1,5	2,00	37,5	4	300	24	8,0	1,45	13,24	30	67,31	70	8000	857500	21	1,75	228,67	No	-
	6	1	1,5	2.00	37,5	5	468.75	24	0,9	1,45	14,90	30	79,33	85	8000	1535313	21	2.39	209.62	No	_
																					_
	1	legno acc	iaio cls ar	mato c	(F)								1 4								G

Calcolato il carico totale allo SLE q_e , specificato il modulo elastico E ed il momento di inerzia I_x , è ora possibile calcolare l'abbassamento massimo che è pari a:

$$v_{max} = \frac{q_e \, l^4}{8 \, E \, I_x}$$

e verificare che il rapporto tra la luce della trave e il suo spostamento massimo sia maggiore di 250, come imposto dalla normativa in base al tipo di elemento strutturale considerato.

$$\frac{l}{v_{max}} \ge 250$$

Tabella 4.2.X Limiti di deformabilità per gli elementi di impalcato delle costruzioni ordinarie

Elementi strutturali	Limiti superiori per vertic	
	$\frac{\delta_{\max}}{L}$	$\frac{\delta_2}{\mathrm{L}}$
Coperture in generale	1 200	$\frac{1}{250}$
Coperture praticabili	1 250	1 300
Solai in generale	1 250	1 300
Solai o coperture che reggono intonaco o altro materiale di finitura fragile o tramezzi non flessibili	1 250	1 350
Solai che supportano colonne	$\frac{1}{400}$	1 500
Nei casi in cui lo spostamento può compromettere l'aspetto dell'edificio	1 250	
In caso di specifiche esigenze tecniche e/o funzionali tali limiti devono	essere opportunament	e ridotti.