ESERCITAZIONE 2- Parte II – Creazione del modello su SAP; verifica a flessione per le travi e a pressoflessione per i pilastri sottoposti a carico neve, vento e sisma.

Il primo passo è disegnare i telai progettati nella precedente esercitazione su SAP aventi due piante differenti, una per legno e calcestruzzo armato, considerando una luce massima di 5/6 metri, e una per l'acciaio, che può raggiungere luci maggiori (circa 7/8 m di luce massima), entrambi di 4 piani con interpiano di 3,5 metri.

- FASE 1: Creazione del modello e verifica preliminare

Sono stati aperti tre file SAP per il telaio in acciaio, legno e calcestruzzo armato e si è proceduto ai seguenti passaggi.

ACCIAIO

E' stata creata la griglia su SAP e inserito i valori in modo da costruire il solaio precedentemente progettato.

New Model Initializ	sation			Project Info	mation
Initialize Mod	del from Defaults v	with Units K	N, m, C 💌	Modify	/Show Info
C Initialize Mod	del from an Existin	ng File			
Select Template					
			$\Lambda\Lambda\Lambda$	(XI)	\sim
			TAAP	\boxtimes	IMI
Direl	CHOA	0	20 T	20.7	20.5
Blank	Grid Uniy	Beam	2D Trusses	3D Trusses	20 Frames
Aster		#110##10#		_117	
				4000	- T
HIT!					
3D Frames	Wall	Flat Slab	Shells	Starcases	Storage
					Structures
SD-SAFE		200			
Bur					
Linderground	Solid Models	Pipes and			

Cartesian	Cylindrical
Coordinate System	Name
GLOBAL	
Number of Grid Line	6
X direction	8
Y direction	4
Z direction	2
Grid Spacing	
X direction	8
Y direction	3
Z direction	3.5
First Grid Line Loca	tion
X direction	0.
Y direction	0,
Z direction	0,

e Grid	iystem Data							Defin	e Grid S	ystem Data							
Form	at							Edit	Form	at							
					Units		Grid Lines							Units			Grid Lines
ystem	Name	G	LOBAL		KN,	m, C 🔹	Quick Start	5	System	Name	G	LOBAL		KN	, m, C _	•	Quick Start
Grid Da	ta							-×	Grid Da	la							
	0.110	0.1.1		10.3.75		0.101				Grid ID	Ordinate	Line Type	Visibility	Bubble Loc.	Grid Color	-	
	Gind ID	Urdinate	Line Type	Visibility	Bubble Loc.	Grid Color A			1	A	0,	Primary	Show	End			
1	A	U,	Primary	Show	End				2	В	8,	Primary	Show	End		- 1	9 99 999 9
2	В	8,	Primary	Show	End		9999999999		3	С	13	Primary	Show	End			
3	U	16,	Primary	Show	End		8		4	D	19	Primary	Show	End			
4	0	24,	Primary	Show	End				5	E	25	Primary	Show	End			ş
5	E	32,	Primary	Show	End				6	F	30	Primary	Show	End	2		
6	F	40,	Primary	Show	End				7	G	38	Primary	Show	End			
7	G	48,	Primary	Show	End				8	н	42	Primary	Show	End		-	
8	н	56,	Primary	Show	End	-		-Y	Grid Da	a							Dienlau Gride as
irid Da	ta						Display Grids as									- 1	Chipidy Shar at
	Grid ID	Ordinate	Line Tune	Vieihilitu	Bubble Loc	Grid Color	@ Ordestes C Searing			Grid ID	Ordinate	Line Type	Visibility	Bubble Loc.	Grid Color 🔺	1	
1	1	0	Primaru	Show	Start	and color -	se ordinates s opacing		1	1	0,	Primary	Show	Start		1 1	
2	2	3	Primary	Show	Start				2	2	3,	Primary	Show	Start			
3	3	6	Primary	Show	Start		Hide All Grid Lines		3	3	9	Primary	Show	Start			Hide All Grid Lines
4	4	9	Primary	Show	Start				4	4	15	Primary	Show	Start			Glue to Grid Lines
5				onon	o tutt		Glue to Grid Lines		5								
6									6					-			Bubble Size 11875
7							Bubble Size 1,1875		1					-			Dapare Size Transfer
8						-		•	8							<u> </u>	
Seid Da	ta							TZ	Grid Da	ta							Reset to Default Colo
and De							Reset to Default Color			Grid ID	Ordinate	Line Type	Visibility	Bubble Loc.		-	Trease to Derduit Colo
	Grid ID	Ordinate	Line Type	Visibility	Bubble Loc.	-			1	Z1	0,	Primary	Show	End		1	Develop de la sec
1	Z1	0,	Primary	Show	End		Bearder Ordinates		2	Z2	3,5	Primary	Show	End		-	Heorder Urdinates
2	Z2	3,5	Primary	Show	End				3								
3									4								
4									5								
5									6								
6									7								OK Cano
7							OK Cancel		8							-	Constanting Constant
8						-											

Una volta creato il primo solaio, questo viene copiato per un valore di interpiano di 3,5 m in modo da costruire tutto il telaio.

Si procede con l'assegnazione dei vincoli, inserendo l'incastro in tutti i punti della base, assegnando le sezioni e selezionando i profili scelti in fase di calcolo.

Sono state poi inserite le densità di carico verticali agenti sulla struttura, quindi Q_s , $Q_p \in Q_a$ ed è stato assegnato il "Diaphram" alle travi e ai punti che collegano le travi ad ogni impalcato. Questo serve a collegarli e a "costringerli" a muoversi come se fosse un corpo rigido.

	Joint	14	Restraints	0 . 1111- nd	• I•			
Frame Section Properties	Frame		Constraints					
	Cable	5.41	Springs					
	Tendon	: 1	Masses					
	Area	1	Local Axes					
	Solid	101	Panel Zones					
	Link/Support	1	Merge Number					
	Joint Loads		ESEC1	ESEC1	ESECT A	ESEC1	S C ESECT S C	
1	Frame Loads	1		1	1 1		() (Vevi	
510	Cable Loads	2	-		stro stro		stro	
- E	Tendon Loads	Ē	ž		2		B	
×	Area Loads +	1 ·	FSEC1	 FSEC1 	FSEC1	FSEC1	S FSEC1	
	Solid Loads							
last	Link/Support Loads	T S S S S S S S S S S S S S S S S S S S	444		lastr		lastr	
<u>م</u>	Joint Patterns		ERECT	ERECT	ERECT N	ERECT	C ESECT	
1 1/1	Assign to Group Ctrl+Shift+G			``	1		(Vev)	
stro	Undate All Generated Minne Properties	0.115	-		astro astro		oute	
ž		-	2	E .	<u>1</u>		2	
·	Clear Display of Assigns		FSEC1	FSEC1	· FSEC1	FSEC1	ESEC1	
	Copy Assigns							
Sal	Paste Assigns	See.			last		liast	
a.	α.	-a			· ·		•	
×		m	r	1 1	1 11		-	
		Laboration of the laboration o	-		and tokal			

Si è proceduto alla definizione della combinazione di carico fondamentale per carichi verticali (SLU), si è fatta correre l'analisi e sono stati visualizzati i seguenti diagrammi delle sollecitazioni.

Diagramma dei momenti sulle travi:

Diagramma delle sollecitazioni su pilastrata:

E' stata quindi visualizzata la struttura in stato di deformata ed esportato le tabelle Excel (Element Output-Frame Output, Joint Output – Reactions e Displacements) per una verifica preliminare.

	Load Patterns Model Del 1
U MODEL DEFINITION (0 of 50 tables selected)	Salast Land Patterns
E Disputen Data	atten Loter Partine
I and Pattern Definitions	4 of 4 Selected
* O Other Definitions	- Load Cases (Results)
+ C Load Case Definitions	Select Load Cares
Connectivity Data	T of E Colored
# Joint Assignments	1 of 5 Selected
+ C Frame Assignments	Medila/Show Online
# Options/Preferences Data	
🕸 🖂 Miscellaneous Data	Set Output Selections
器 ANALYSIS RESULTS (5 of 9 tables selected)	Options
# 28 Joint Output	E como
🗰 🖾 Displacements	Chara Defense and
S Unplacements S Reactions C Joint Masses S Element Output C	1 Show Originates
• State Cuput	
III Ubjects and Elements	
In Clinicians and and	Named Sets
	Save Named Set
	Show Manual Sat
	Particle Manual Part
	Diberts reacted and
	OK Cancel
	- On Carte

CALCESTRUZZO ARMATO

I passaggi per la creazione del modello su SAP sono stati i medesimi dell'acciaio, differivano la pianta del solaio, il materiale e la sezione.

Si è proceduto allo stesso modo dell'acciaio, inserendo quindi i carichi distribuiti agenti sulla struttura, assegnando il"Diaphram", definendo la combinazione di carico fondamentale e facendo correre l'analisi. Sono stati visualizzati quindi i diagrammi delle sollecitazioni e sono state esportate le tabelle Excel per una verifica preliminare.

Diagramma dei momenti sulle travi:

Diagramma delle sollecitazioni su pilastrata:

LEGNO

I solai in legno hanno la stessa pianta dei solai in calcestruzzo armato descritti qui sopra. Anche in questo caso i passaggi sono stati gli stessi dei due telai precenti, quello che cambia è il materiale che, a differenza dell'acciaio e del cls, dove i profili sono preinseriti e si deve solo scegliere la sezione relativa al primo dimensionamento, nel legno, invece, il materiale non è presente nella libreria istallata. E' stato quindi creato un nuovo materiale specificando la sua natura ortotropa, il peso specifico e il modulo elastico (questi ultimi due cambiano a seconda del tipo di legno). E' stato inserito un legno lamellare GL 24 h come deciso nell'esercitazione precedente.

	Material Type	Symmetry Type		
re GL24 h	Other	Orthotropic	Section Name	TRAVI PRINCIPALI
lasticity	Weight and Mass	Units		
60E+10	Weight per Unit Volume 3.8	KN, m, C 💌	Section Notes	Modify/Show Notes
J0E+08	Mass per Unit Volume 0,38		Properties	Property Modifiers Material
0E+08	- Advanced Material Property Data		Section Properties	Set Modifiers + legno lamellare GL
_	Nonlinear Material Data	Material Damping Properties		
	Time Dependent Properties	Thermal Properties	Dimensions	
			Depth (t3)	0,5
				0.35
l Expansion			width (t2)	10,000
E-05				3.
JE-05				
DE-05				
)E+08				
DE+08				Display Color
0E+08				

Una volta inserite le sezioni rettangolari con il nuovo materiale creato, si è proceduto con gli stessi passaggi descritti precedentemente fino ad arrivare alla configurazione della struttura in stato di deformata e sono state esportate anche qui le tabelle Excel per una verifica preliminare.

- FASE 2: Inserimento dei carichi neve, vento e sisma e verifica finale a flessione per le travi e a presso-flessione per i pilastri.

Per prima cosa si è calcolato il baricentro dei due solai in acciaio e cls/legno o "centro di massa dell'impalcato" attraverso la somma dei rettangoli e grazie a un foglio Excel, da noi creato, sono stati calcolati con velocità i due baricentri.

$$c = (x_c, y_c) \qquad \qquad x_c = \frac{x_{1A_{1+}x_{2A_2}}}{A_{1+A_2}} \qquad \qquad y_c = \frac{y_{1A_{1+}y_{2A_2}}}{A_{1+A_2}}$$

MATERIALE	A1	A2	A3	A4	A5	ΣΑ	X1	X2	X3	<u>π</u> 4	X5	٧ı	¥2	уз	⊽ 4	ÿ5	x	
Acciao	456	24	24	36	24	564	19	40	4	19	34	9	12	1,5	1,5	1,5	19,8936170213	8,0106382979
C.A./Legno	312	18	16	16	0	362	13	27,5	4	22	d.	8	11	1	1	1	13,7209944751	7,5303867403

Sono stati inseriti su SAP i baricentri calcolati e sono stati copiati ad ogni impalcato. Questi serviranno per l'assegnazione delle forze sismiche che si concentrano su ogni impalcato.

Si è proceduto con l'assegnazione del "Diaphram" ad ogni impalcato e con la definizione dei carichi neve, vento e sisma attraverso il comando "Define Load Patterns". Per quanto riguarda il carico neve è stato preso in considerazione un valore di 0,5 KN/m² per gli edifici situati a Roma, mentre per il vento è stato considerato un valore di 0,5 KN/m² per la parete sopravento e 0,4 per la parete sottovento.

Il **carico verticale neve** è stato assegnato come carico distribuito sulle travi principali dell'ultimo impalcato in quanto agisce solo in copertura.

Mentre per il **carico orizzontale vento**, sono state divise le due forze nelle due direzioni perpendicolari al telaio, F_x e F_y e, moltiplicate per 0,8 per i pilastri sopravento e 0,4 per quelli sottovento. Quindi si è moltiplicato il valore trovato per l'area d'influenza. Il vento è considerato un agente dinamico che cambia intensità e direzione nel corso del tempo. Non essendo in grado di valutare la reale direzione del vento con cui investirà la struttura, si procede con un'analisi statica, quindi dividendo le forze a direzione x e le forze a direzione y.

Per quanto riguarda, invece, il calcolo delle **forze sismiche** è stato utilizzato un foglio Excel per ricavare il valore per ogni impalcato, in quanto le forze si concentrano nel centro di massa di ogni impalcato. Per ricavare le forze sismiche per piano, maggiore ai piani superiori, minore a quelli inferiori, si deve calcolare la Forza sismica tot. dell'edificio ricavata moltiplicando **W** (peso dei carichi strutturali e carichi permanenti) con **c** (frazione dell'accelerazione di gravità 0,2)

 $F_s = c W$ $W = (p + 20\% N + 30\% Q_a)$ $F_i = F_s \frac{z_{iW_i}}{\sum_i z_{iW_i}}$

Si considera che ogni piano ha lo stesso peso sismico quindi non c'è differenza tra w_1 , w_2 , w_3 , w_4 (ipotesi ragionevole per edifici regolari) perciò togliendo l'indice si mette in evidenza la W, che è costante per tutti i piani, e si semplifica con la W posta al dividendo. In questo modo si ottiene tale formula: $F_i = F_s \frac{z_i}{r_{r,r_i}}$

Nel nostro caso, per facilitarci i calcoli, è stata creata una tabella Excel con tutti i valori e si sono ricavati i valori (F_1 , F_2 , F_3 , F_4) delle forze sismiche da inserire nei baricentri di ogni impalcato.

MATERIALE		Qs	Qp	Р	Qn	20%	Neve	Qa	30%	Qa%	W	Fs	Z1	Z2	Z3	Z4	Σz	F1	Fz	F₃	F4
Acciao	0,2	1,33	2,99	4, 32	0,5	0,2	0,1	2	0,3	0,6	5,02	1,004						0,1004	0,2008	<mark>0,301</mark> 2	0,4016
C.A.	0,2	3,76	2,68	6,44	0,5	0,2	0,1	2	0,3	0,6	7,14	1,428	3,5	7	<mark>10</mark> ,5	14	35	0,1428	0,2856	0,4284	0,5712
Legno	0,2	0,34	2,89	3,23	0,5	0,2	0,1	2	0,3	0,6	3,93	0,786						0,0786	0,1572	0,2358	0,3144

Si sono inserite quindi su SAP le forze sismiche lungo x e lungo y.

Sono state poi definite le combinazioni di carico allo SLU in cui successivamente sono stati aggiunti ai carichi distribuiti anche le forze orizzontali del sisma e del vento, creando 4 diverse combinazioni per forze sismiche lungo x, forze sismiche lungo y, forza vento lungo x e forza vento lungo y, in modo da poter analizzare la struttura in maniera distinta a seconda delle diverse forze agenti su di essa.

Per la fase successiva di verifica a flessione per le travi e a pressoflessione dei pilastri si è fatta partire l'analisi e, per poter esportarle tabelle Excel con i soli valori delle sollecitazioni delle travi o solo dei pilastri, si è deciso di selezionare su SAP solo gli assi paralleli all'asse xy, per quanto riguarda le travi, o solo l'asse z per quanto riguarda i pilastri.

Select Lines That Are Are To Specified Items Tompare Line Orientation To Coordinate Axes and Planes Concernate Axes and Planes Ares Objects Toletance Angle in Degrees Default (0.657 degrees) User Angle	Select Axes and Planes Coordinate System GLOBAL ▲ T X Axis T X Axis X Axis X Plane T XZ Plane YZ Plane
C User Angle	splay Coordinate System

VERIFICA

Una volta terminata l'analisi in SAP della struttura è stata fatta la verifica degli elementi precedentemente progettati ma sostituendo le sollecitazioni di progetto con quelle ottenute dall'analisi.

1- VERIFICA A FLESSIONE DELLA TRAVE

Dalle tabelle Excel esportate da SAP si cerca il valore massimo del momento e si inserisce nelle tabelle del predimensionamento verificando se la sezione progettata è verificata.

ACCIAIO

interasse (m) q_s (KN/m²) q_p (KN/m²) q_a (KN/m²) q_u (KN/m) luce (m) M_{max} (KN*m) f_{y,k} (N/mm²) f_d (N/mm²) W_{x,min} (cm³) W_x (cm³)

					200.00										
6,00	1,33	2,99	2,00	55,32	8,00	442,59	275,00	261,90	1689,88	1928,00					
6,00	1,33	2,99	2,00	56,51	8,00	452,05	275,00	261,90	1726,02	1928,00	0,91	verificata	trave principale n. 244	IPE 500	
1,00	1,33	2,99	2,00	9,22	8,00	73,76	275,00	261,90	281,65	324,30					Dimensionamento
1,00	1,33	2,99	2,00	9,62	8,00	76,96	275,00	261,90	293,84	324,30	0,307	verificata	travi secondarie	IPE 240	
6,00	1,33	2,99	2,00	55,32	8,00	442,59	275,00	261,90	1689,88	1928,00					warifaa ajama y
6,00	1,33	2,99	2,00	56,51	8,00	345,07	275,00	261,90	1317,54	1928,00	0,91	verificata	trave principale n. 244	IPE 500	veniica sisma x
		-				J									
6,00	1,33	2,99	2,00	55,32	8,00	442,59	275,00	261,90	1689,88	1928,00					verifice cierra v
6,00	1,33	2,99	2,00	56,51	8,00	345,07	275,00	261,90	1317,52	1928,00	0,91	verificata	trave principale n. 244	IPE 500	vernica sistila y
6,00	1,33	2,99	2,00	55,32	8,00	442,59	275,00	261,90	1689,88	1928,00					vorifica vonto v
6,00	1,33	2,99	2,00	56,51	8,00	438,27	275,00	261,90	1673,40	1928,00	0,91	verificata	trave principale n. 244	IPE 500	veniica vento x
				10 2.5				01.7							
6,00	1,33	2,99	2,00	55,32	8,00	442,59	275,00	261,90	1689,88	1928,00					vorifica vento v
6,00	1,33	2,99	2,00	56,51	8,00	438,43	275,00	261,90	1674,02	1928,00	0,91	verificata	trave principale n. 244	IPE 500	veniica vento y
				10											

CALCESTRUZZO ARMATO

A	В	С	D	E	F	G	H	1 2	J	К	L	M	N	0	P	Q	R	S	T	U	٧	V
interasse (m	q. (KN/m²)	q, (KN/m²)	q, (KN/m²)	q. (KN/m)	luce (m)	M (KN'm)	f _{et} (N/mm²)	f _{el} (N/mm²)	f., (N/mm²)	f_(N/mm²)	β	r	b (cm)	h.(cm)	δ (cm)	H _{ata} (cm)	н	HA	area (m²) peso unitario (KN/m)		
5,00	3,76	2,68	2,00	59,51	6,00	267,80	450,00	391,30	45,00	25,50	0,49	2,20	30,00	41,18	5,00	46,18	50,00	0,08	0,15	3,75	trave maggiormente	
				64,39	6,00	289,73	450,00	391,30	45,00	25,50	0,49	2,20	30,00	42,83	5,00	47,83	verificata				solecitata	
4,00	3,76	2,68	2,00	47,61	6,00	214,24	450,00	391,30	45,00	25,50	0,49	2,20	30,00	36,83	5,00	41,83	50,00	0,07	0,15	3,75	altra trave	Dimensionamento
100	0.70			52,48	6,00	236,17	450,00	391,30	45,00	25,50	0,49	2,20	30,00	38,67	5,00	43,67	verificata			150		
1,00	3,76	2,68	2,00	11,90	6,00	53,56	450,00	391,30	45,00	25,50	0,49	2,20	20,00	22,56	5,00	27,56	30,00	0,05	0,06	1,50	6	
	-			13,85	6,00	62,33	450,00	391,30	45,00	25,50	0,49	2,20	20,00	24,33	5,00	29,33	verificata	-			trave secondaria	
E 00	0.70	2.00	0.00	50.51	0.00	007.00	450.00	201.20	45.00	05.50	0.40	0.00	20.00	4140	5.00	40.40	50.00	0.00	0.45	0.75		
5,00	3,15	2,00	2,00	03,01	6,00	267,80	450,00	331,30	45,00	25,50	0,43	2,20	30,00	91,18	5,00	46,18	50,00	0,08	0,15	3,79	trave maggiormente	Verifica sisma x
		<u> </u>		64,33	6,00	130,34	450,00	391,30	40,00	20,00	0,49	2,20	30,00	23,28	5,00	34,28	verificata	-	2		solecitata	
5.00	3.76	2.68	2.00	59.51	6.00	267.80	450.00	39130	45.00	25.50	0.49	2.20	30.00	41.19	5.00	46.19	50.00	0.08	0.15	3.75	traue maggiormente	
0,00	0,10	2,00	2,00	64.39	6.00	135.33	450.00	391.30	45.00	25.50	0.49	2.20	30.00	29.27	5.00	34.27	verificata	0,00	0,10	0,10	colecitata	Verifica sisma y
8		S		01,00	0,00	100,00	100,00	001,00	10,00	20,00	0,10	6,60	00,00		0,00	01,61	Termodia		8		Dorconara	
5.00	3.76	2.68	2.00	59.51	6.00	267.80	450.00	391.30	45.00	25.50	0.49	2.20	30.00	41.18	5.00	46.18	50.00	0.08	0.15	3.75	trave maggiormente	100000000000000000000000000000000000000
				64,39	6.00	159,68	450.00	391.30	45.00	25.50	0.49	2.20	30.00	31,80	5,00	36,80	verificata	-			solecitata	verifica vento x
					1.1.1.1.1.1.1.	in cardeou u				**************************************												
5,00	3,76	2,68	2,00	59,51	6,00	267,80	450,00	391,30	45,00	25,50	0,49	2,20	30,00	41,18	5,00	46,18	50,00	0,08	0,15	3,75	trave maggiormente	Varifia sucesta u
	201.04.2.0			64,39	6,00	159,38	450,00	391,30	45,00	25,50	0,49	2,20	30,00	31,77	5,00	36,77	verificata				solecitata	vennoa vento g
1	1					97 S				<u>2</u>	S - 5		\$7	: S		18 8						

LEGNO

interasse (m)	q _s (KN/m ²)	q _p (KN/m ²)	q _a (KN/m ²)	q _u (KN/m)	luce (m)	M _{max} (KN*m)	f _{m,k} (N/mm ²)	k _{mod}	٧m	f _d (N/mm ²)	b (cm)	h _{min} (cm)	H (cm)				
					1			-			-						
5,00	0,34	2,89	2,00	40,11	6,00	180,51	24,00	0,80	1,45	13,24	30,00	52,22	45,00	0,95	non verificata	trave maggiormente	
5,00	0,34	2,89	2,00	40,47	6,00	182,12	24,00	0,80	1,45	13,24	35,00	48,56	50,00	1,22	verificata	sollecitata	
4,00	0,34	2,89	2,00	32,47	6,00	146,13	24,00	0,80	1,45	13,24	30,00	46,98	50,00	1,05	verificata	altra trave	Dimensionamento
1,00	0,34	2,89	2,00	8,45	6,00	38,04	24,00	0,80	1,45	13,24	25,00	26,26	30,00	0,52		trave secondaria	
1,00	0,34	2,89	2,00	7,78	6,00	35,00	24,00	0,80	1,45	13,24	25,00	25,19	30,00				
5,00	0,34	2,89	2,00	40,50	6,00	65,51	24,00	0,80	1,45	13,24	35,00	29,12	50,00	1,22	verificata	trave maggiormente	Varifica eiema v
						8										sollecitata	Veniloa Sistila X
											2						
5,00	0,34	2,89	2,00	40,50	6,00	65,51	24,00	0,80	1,45	13,24	35,00	29,12	50,00	1,22	verificata	trave maggiormente	Verifica siema v
																sollecitata	vennea bibina y
							1000			1000000000000		CONSTRUCTO	- Walter				
5,00	0,34	2,89	2,00	40,50	6,00	89,96	24,00	0,80	1,45	13,24	35,00	34,13	50,00	1,22	verificata	trave maggiormente	Verifica vento v
								10. 10		1.12	- 14 - F					sollecitata	Venned Venne X
5,00	0,34	2,89	2,00	40,50	6,00	89,96	24,00	0,80	1,45	13,24	35,00	34,13	50,00	1,22	verificata	trave maggiormente	Verifica vento v
			2					-				1				sollecitata	verned verno y

1- VERIFICA A PRESSO-FLESSIONE DEL PILASTRO

ACCIAIO

Per la verifica a presso-flessione del pilastro, la tensione massima è fornita dalle due diverse sollecitazioni agenti sullo stesso, cioè lo sforzo normale di compressione (N) e il momento flettente trasmesso dalla trave al pilastro (M_t). La tensione massima è pari a:

$$\sigma_{max} = \frac{N}{A} + \frac{M_{max}}{W_{max}}$$

Da cui la verifica di una sezione presso-inflessa:

$$\frac{N}{A} + \frac{M_{max}}{W_{max}} < f_{yd}$$

A	B	C	D	E	F	G	Н	T	J	К	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE	AF
L	L ₂	Area	trave	traves	q _{trave}	qs	q _p	q,	q _{solalo}	N plani	N	f _{yk}	Υm	f _{yd}	A _{min}	E	β	L	λ*	Pmin	Imin	Adesign	lasign	Pmin	λ	Wmax	M,	σ _{max}		profilo	
m	m	m2	kN/m	kN/m	kN	kN/mq	kN/mq	kN/mq	kN		kN	Мра		Мра	cm2	Mpa		m		cm	cm4	cm2	cm4	cm		cm3	kN*m	Мра			
6,00	6,50	39,00	0,91	0,91	14,79	1,33	2,99	2,00	359,60	4	1498	275,00	1,05	261,90	57,2	210000	1,00	3,50	88,96	3,93	885	64,3	1955	5,51	63,52			_		HEA220	Dimensionamento
3,00	0 4,00	12,00	0,91	0,91	8,28	1,33	2,99	2,00	110,65	1	2143	275,00	1,05	261,90	81,8	210000	1,00	3,50	88,96	3,93	1267	86,8	3668	6,50	53,85	282,10	6,72	24,71	verificata	HEA260	Verifica a sforzo normale sisma x (n. pilastro 43)
3,00	4,00	12,00	0,91	0,91	8,28	1,33	2,99	2,00	110,65	1	2143	275,00	1,05	261,90	81,8	210000	1,00	3,50	88,96	3,93	1266	86,8	3668	6,50	53,85	282,10	6,72	24,70	verificata	HEA260	Verifica a sforzo normale sisma y (n. pilastro 43)
3,00	0 4,00	12,00	0,91	0,91	8,28	1,33	2,99	2,00	110,65	1	2696	275,00	1,05	261,90	102,9	210000	1,00	3,50	88,96	3,93	1593	112,5	6310	7,49	46,73	420,60	6,72	23,98	verificata	HEA300	Verifica a sforzo normale vento x (n. pilastro 43)
3,00	0 4,00	12,00	0,91	0,91	8,28	1,33	2,99	2,00	110,65	1	2693	275,00	1,05	261,90	102,8	210000	1,00	3,50	88,96	3,93	1592	112,5	6310	7,49	46,73	420,60	6,72	23,95	verificata	HEA300	Verifica a sforzo normale vento y (n. pilastro 43)

CALCESTRUZZO ARMATO

Nella verifica delle sezioni in cls si deve tener conto dell'eccentricità, in quanto la presso-flessione è detta anche compressione eccentrica cioè equivale a uno sforzo normale non centrato. Quindi si calcola $\mathbf{e} = \frac{M}{N}$

Se $\mathbf{e} <= \frac{H}{6}$ lo sforzo normale si trova nel terzo medio quindi la sezione risulta tutta compressa (soluzione più semplice), se $\frac{H}{6} <= \mathbf{e} <= \frac{H}{2}$ la distribuzione delle tensioni risulta con una configurazione triangolare, mentre se $\mathbf{e} > \frac{H}{2}$ la flessione è talmente grande che lo sforzo normale non conta e si dimensiona solo a flessione.

Nel nostro caso $\mathbf{e} \le \frac{H}{6}$ quindi la sezione risulta tutta compressa e la verifica si ha con:

$$\sigma_{max} = \frac{N}{A} + \frac{M_t}{W_{max}} \qquad \qquad \frac{N}{A} + \frac{M_t}{W_{max}} < f_{cd}$$

N	fck	fcd	A.i.	b.i.	E	β	1	λ.	0	b	b	hair	h	A	harris		Van	Q,	M	σ	e	V.	σ		
kN	Mpa	Mpa	cm2	cm	Mpa		m		cm	cm	cm	cm	cm	cm2	cm4	cm4	cm3	kN/m	kN'm	Mpa	m	cm3	Mpa		
1643	45,0	25,5	644,2	25,4	21000	1,00	3,50	90,15	3,88	13,45	30,00	21,47	30,00	900	67500	67500	4500,00	59,51	178,53	57,93				No	water and
1643	45,0	25,5	644,2	25,4	21000	1,00	3,50	90,15	3,88	13,45	30,00	21,47	50,00	1500	112500	312500	12500,00	59,51	178,53	25,23	1			Sì	Dimensionamento
2228	45,0	25,5	873,5	29,6	21000	1,00	3,50	90,15	3,88	13,45	30,00	29,12	50,00	1500	112500	312500	12500,00	59,51	17,89	16,28	0,01	12500,00	1,49	verificata	Verifica sisma x (Nmax) (n. pilastro 14)
318	45,0	25,5	124,6	11,2	21000	1,00	3,50	90,15	3,88	13,45	30,00	4,15	50,00	1500	112500	312500	12500,00	59,51	70,58	7,76	0,22	12500,00	0,22	verificata	Verifica sisma x (e max) (n. pilastro 205)
2228	45,0	25,5	873,5	29,6	21000	1,00	3,50	90,15	3,88	13,45	30,00	29,12	50,00	1500	112500	312500	12500,00	59,51	17,66	16,26	0,01	12500,00	1,49	verificata	Verifica sisma y (Nmax) (n. pilastro 14)
318	45,0	25,5	124,6	11,2	21000	1,00	3,50	90,15	3,88	13,45	30,00	4,15	50,00	1500	112500	312500	12500,00	59,51	70,57	7,76	0,22	12500,00	0,22	verificata	Verifica sisma y (e max) (n. pilastro 205)
2450	45,0	25,5	960,8	31,0	21000	1,00	3,50	90,15	3,88	13,45	30,00	32,03	50,00	1500	112500	312500	12500,00	59,51	37,92	19,37	0,02	12500,00	1,64	verificata	Verifica vento x (Nmax) (n. pilastro 14)
312	45,0	25,5	122,4	11,1	21000	1,00	3,50	90,15	3,88	13,45	30,00	4,08	50,00	1500	112500	312500	12500,00	59,51	60,81	6,95	0,19	12500,00	0,21	verificata	Verifica vento x (e max) (n. pilastro 205)
2450	45,0	25,5	960,7	31,0	21000	1,00	3,50	90,15	3,88	13,45	30,00	32,02	50,00	1500	112500	312500	12500,00	59,51	15,02	17,53	0,01	12500,00	1,63	verificata	Verifica vento y (Nmax) (n. pilastro 14)
312	45,0	25,5	122,2	11,1	21000	1,00	3,50	90,15	3,88	13,45	30,00	4,07	50,00	1500	112500	312500	12500,00	59,51	59,51	6,84	0,19	12500,00	0,21	verificata	Verifica vento y (e max) (n. pilastro 205)

LEGNO

Per la verifica a presso-flessione di un pilastro in legno si ha σ_c dalla compressione N e σ_f dalla flessione M.

$$\sigma_c = \frac{N}{A}$$
 $\sigma_f = \frac{M}{W}$

Da cui la verifica di una sezione presso-inflessa:

$$\frac{\sigma_c}{f_{cd}} + \frac{\sigma_f}{f_{fd}} <= 1$$

А	В	C	D	E	F	G	Н	1	J	К	L	М	N	0	P	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
L,	L ₂	Area	travep	trave,	Q _{trave}	qs	q _p	q,	Q _{solato}	N plant	N	f _{c0,k}	k _{mod}	¥ m	f _{c0d}	A _{min}	E,005	β	1	λ _{max}	Pmin	b _{min}	b	h _{min}	h	Adesign	besign	f _{m,k}	f _{fd}	Mt	W _{max}	σc	σ		
m	m	m²	kN/m	kN/m	kN	kN/mq	kN/mg	kN/mg	kN		kN	Мра			Мра	cm²	Мра		m	-	cm	cm	cm	cm	cm	cm ²	cm ⁴	Мра	Мра	kN*m	cm3	Мра	Mpa		
6,00	5,00	30,00	1,05	1,05	15,02	0,34	2,89	2,00	233,31	4	993	24,00	0,80	1,45	13,24	750,2	8800	1,0	3,50	80,95	4,32	14,98	30,00	25,01	30,00	900	67500								Dimensionamento
6,00	5,00	30,00	1,05	1,05	15,02	0,34	2,89	2,00	233,31	4	812	24,00	0,80	1,45	13,24	613,2	8800	1,0	3,50	80,95	4,32	14,98	30,00	20,44	30,00	900	67500	24	13,24	1,21	4500,00	0,90	0,00027	verificata	Verifica sisma x (n. pilastro 14)
6,00	5,00	30,00	1,05	1,05	15,02	0,34	2,89	2,00	233,31	4	812	24,00	0,80	1,45	13,24	613,2	8800	1,0	3,50	80,95	4,32	14,98	30,00	20,44	30,00	900	67500	24	13,24	1,21	4500,00	0,90	0,00027	verificata	Verifica sisma y (n. pilastro 14)
6,00	5,00	30,00	1,05	1,05	15,02	0,34	2,89	2,00	233,31	4	1077	24,00	0,80	1,45	13,24	813,4	8800	1,0	3,50	80,95	4,32	14,98	30,00	27,11	30,00	900	67500	24	13,24	17,25	4500,00	1,20	0,00383	verificata	Verifica vento x (n. pilastro 14)
6,00	5,00	30,00	1,05	1,05	15,02	0,34	2,89	2,00	233,31	4	1077	24,00	0,80	1,45	13,24	813,4	8800	1,0	3,50	80,95	4,32	14,98	30,00	27,11	30,00	900	67500	24	13,24	17,25	4500,00	1,20	0,00383	verificata	Verifica vento y (n. pilastro 14)

Dalle tabelle Excel si può notare come le sezioni risultino verificate.