Esercitazione: travatura reticolare 3D

Volendo coprire una superficie di 1296 mq progettiamo quindi una travatura spaziale reticolare il cui modulo base è di 3 m per lato ed è sostenuta da quattro elementi distanti fra loro 24 m che abbiamo sintetizzato come appoggi (vedi disegno 2).

Alla piastra reticolare saranno appesi tre solai che considereremo di peso 10kN/mq l'uno ed un peso di copertura di 5kN/mq (comprensivo di: impermeabilizzanti, controsoffitti, neve, solaio di copertura, impianti e manutenzione).

Iniziamo quindi a disegnare la nostra struttura su SAP:

- New model -> modello con griglia (unita di misura KN, m, C,)
- Creiamo una griglia x=2 y=2 z=2
- Spazio fra gli assi x=3 y=3 z=3
- Uso lo strumento "draw frame" per ricalcare il cubo e per disegnare le diagonali su ogni faccia.
- Seleziono il cubo e lo copio ed incollo tante volte quanti sono i moduli della mia struttura facendo attenzione a non ricopiare i lati in comune.

- Seleziono il comando "Draw special Joint" e disegno i punti A,B,C,D, li seleziono e gli assegno il vincolo esterno (cerniera) con i comandi: Assign -> Joint -> Restraints (scelgo cerniera).
- Si determinano le tipologie di nodi in base alla loro area di influenza ed una volta fatto il calcolo (peso del solaio [Kn/mq] *area di influenza [mq] di ogni nodo * il numero dei solai) il peso in kN che ognuno di essi deve sostenere.

Assegno quindi su SAP, ad ogni gruppo di nodi (centrali, laterali ed angolari) il peso che devono sostenere con i comandi: Assign -> Joint loads -> Forces, secondo il nostro schema:

Su z=0

Ogni solaio ha una superficie di 1296 mq e pesa 10 Kn/mq, la nostra piastra reticolare 3D ha 169 nodi.

- Un gruppo da 121 nodi che sostengono 270 KN (9mq x 10Kn/mq x 3 (solai))
- Un gruppo da 44 nodi che sostengono 135 KN (4,5mq x 10Kn/mq x 3 (solai))
- Un gruppo da 4 nodi che sostengono 67,5 KN (11,25mq x 10Kn/mq x 3 (solai))

Su z=3

La nostra copertura con una superficie di 1296 mq pesa quindi 5 KN/mq e 169 nodi

- Un gruppo da 121 sostengono 45 KN (9mq x 5KN/mq)
- Un gruppo da 44 sostengono 22,5 KN (4,5 mq x 5 KN/mq)
- Un gruppo da 4 sostengono 11,25 KN (2,25mq x 5KN/mq)
- Assegno i casi di carico (Load Pattern) con i comandi:

Define -> Load Patterns -> Load pattern Name: "nodi centrali"/"nodi angolari"/"nodi laterali" -> Add New Load Pattern (Self Weight Multiplier =0) per poi creare una combinazione di carichi ("Load Combination") che escluda il carico del peso proprio "DEAD".

pad Patterns				Click To:	
Load Pattern Name	Туре	Self Weight Multiplier	Auto Lateral Load Pattern	Add N	lew Load Pattern
DEAD	DEAD	• 1	Ψ.	Mod	lify Load Pattern
DEAD centrali laterali angolari angolari2 centrali2 laterali2	DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEAD	1 0 0 0 0 0 0		Modify L Dele Show L	ateral Load Pattern ete Load Pattern oad Pattern Notes
					OK

tes	otes				
ad Combination Type Linear Add ions Convert to User Load Combo Create Nonlinear Load Case from Load Combo ine Combination of Load Case Results Load Case Name Load Case Type Scale Factor ngolari Linear Static 1, ngolari2 Linear Static 1, Modity terafi2 Linear Static 1, Modity terafi2 Linear Static 1, Modity Delete			Modify/Show Notes		
Convert to User Load Combo Create Nonlinear Load Case from Load Combo ine Combination of Load Case Results Load Case Type Scale Factor Load Case Name Load Case Type Scale Factor ngolari Linear Static 1. Add Linear Static 1. ngolari2 Linear Static 1. Mariali2 Linear Static 1. Modity Linear Static 1. Modity Linear Static 1. Modity Linear Static 1. Modity Linear Static 1.	oad Combination Ty	pe	Linear Add		
Load Case Name Load Case Type Scale Factor ngolari Linear Static 1, entrali Linear Static 1, Add Linear Static 1, ngolari2 Linear Static 1, Merali2 Linear Static 1, Modify Linear Static 1,	Convert to User L	Load Combo Create No	nlinear Load Case fror	n Load Combo	
ngolari vilinear Static 1, ngolari Linear Static 1, erntali Linear Static 1, Add terali Linear Static 1, ngolari2 Linear Static 1, Modify ernal2 Linear Static 1, bereal2 Linear Static 1, Delete	Load Case Na	me Load Case Type	Scale Factor		
ngolan Linear Static 1, Add erentali Linear Static 1, Add tereali Linear Static 1, Ingolari2 Linear Static 1, Modify errafal2 Linear Static 1, Delete	angolari	 Linear Static 	1.		
terali Linea Static 1, ngolari2 Linear Static 1, Modify errali2 Linear Static 1, Delete terali2 Linear Static 1, Delete	angolari centrali	Linear Static Linear Static	1,	Add	
ngolari2 Linear Static I, Modify entrali2 Linear Static I, sterali2 Linear Static I, Delete	laterali	Linear Static	1.		
sterali2 Linear Static 1, Delete	angolari2 centrali2	Linear Static	1.	Modify	
	laterali2	Linear Static	i.	Delete	

- Dobbiamo assegnare ad ogni nodo M=0 : seleziono quindi tutte le aste della struttura, creo un gruppo, e assegno agli estremi momento nullo, poiché le cerniere interne non ammettono il passaggio del momento.

I comandi utilizzati sono: Assign -> Frame -> Releases mettendo: su Torsion la spunta su "end", su Moment 2-2 la spunta su "start" ed "end" e su Moment 3-3 la spunta su "start" ed "end".

- Dobbiamo quindi assegnare una sezione uguale per tutte le aste della struttura tramite il comando Assign-> Frame-> Frame Sections -> Import New Properties -> Pipe -> Apro il file EURO.PRO -> Scelgo la sezione D114,3 x 3,6 dal sagomario.
 - Materiale = Acciaio S235.
- Quindi premo su Run Now assegnando alla voce DEAD "do not RUN".
- Leggo l'analisi prodotta e su SAP uso il comando Display -> Show Tables e spunto la voce Joint Output ed Element Output -> ok -> apro una tabella che esporto su Excel.

Apro Excel e, come opzione preliminare ordino i risultati in ordine crescente eliminando i valori di sforzo normale ripetuti per le varie lunghezze dell'asta, in quanto un'asta doppiamente incernierata è soggetta solamente a sforzo normale che risulta costante su tutta la lunghezza dell'asta.

Importo tutti i valori sulle tabelle Excel divisi per "aste tese" (valori positivi di N) ed "aste compresse" (valori negativi di N).

ASTE TESE

Secondo la formula di Navier: $\sigma = N/A$

Di conseguenza, per dimensionare l'area minima della sezione di ogni asta (Amin), la formula che devo applicare è : A= N/ σ in cui N è lo sforzo agente che ricavo da SAP e σ è la tensione di design (fyd) che si ottiene dalla divisione della tensione caratteristica di snervamento (fyk) del materiale che vale 235MPa per un coefficiente di sicurezza (ym0) che ha valore 1,05.

Dalle aree minime ottenute scelgo dalla tabelle dei profilati cavi a sezione circolare, le aree di design [cm^2], superiori alle aree minime.

ASTE COMPRESSE:

Per le aste compresse, siccome sono soggette ad instabilità, oltre a ricavare l'area minima come per le aste tese devo anche ricavare la snellezza (λ), il raggio giratore d'inerzia minimo (ρ min), e l'inerzia minima (Imin).

Calcolo la snellezza (λ) [adimensionale] moltiplicando pigreco per la radice quadrata del modulo elastico (E) [MPa] / fyd [Mpa] e verifico che sia inferiore a 200.

Calcolo il ρ minimo, moltiplicando β (a cui diamo valore=1 poiché le aste sono doppiamente incernierate) per la lunghezza delle aste l (la quale sarà l=3m per le aste verticali ed orizzontali, mentre per quelle diagonali sarà l*rad2=3*rad2=4,24m) per 100 e dividendo tutto per la snellezza λ .

Calcolo l'inerzia minima (Imin) moltiplicando l'area minima (Amin) per il ρ minimo elevato alla seconda.

Dopo aver calcolato questi valori scelgo le mie sezioni dalla tabella in modo che l'Area di Design, l'Inerzia di Design e il raggio giratore d'inerzia di design, siano maggiori dei valori calcolati prima.

Torno su SAP e assegno alle aste del modello le sezioni di Design calcolate per verificare che, con la nuova combinazione di carico in cui questa volta aggiungo anche il peso proprio delle aste, la struttura sia in equilibrio.