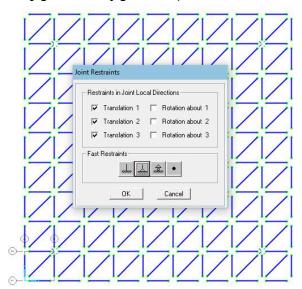
PROGETTO DI UNA TRAVATURA RETICOLARE SPAZIALE IN ACCIAIO:


Si è scelto di progettare una travatura reticolare (fig. 1.1 e fig 1.2) di modulo 3m x 3m (in pianta) con una ripetizione di 9 moduli sia longitudinalmente che latitudinalmente. Il solaio riporta quindi un dimensionamento tridimensionale di 27m x 27m x 3m (x,y,z) con vincoli posti internamente ad una distanza dal bordo di 3m x 3m i quali creano una luce massima di 21 m. Si è ipotizzato che il solaio abbia il compito di reggere 4 piani dal peso di 10kN/mq per piano.

La struttura avrà quindi l'obiettivo finale di riuscire a reggere un carico pari a 29 160 kN.

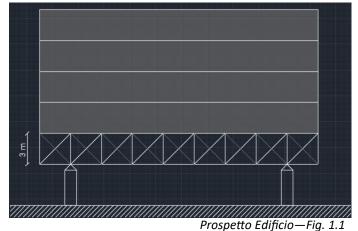
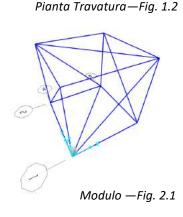
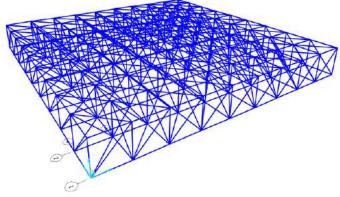
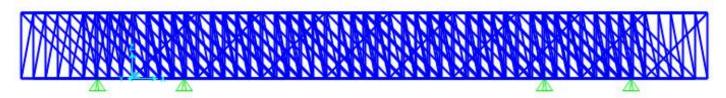

Carichi	
N. Piani	4
Dimensioni Piano	27 m x 27 m
Superfice per Piano	729 mq
Carico per Piano	10 kN
Carico Totale	29 160 kN


Tabella Carichi—Fig. 1.3


Tramite SAP 2000 si è proceduto attraverso il ridisegno degli elementi che componevano tale struttura partendo dal singolo modulo della reticolare (*fig. 2.1*), passando per la reticolare completa (*fig. 2.2*) ed arrivando ad identificare la posizione dei quattro vincoli (*fig. 2.3.1 a—fig. 2.3.2 b*).



Definizione dei Vincoli —Fig. 2.3.1

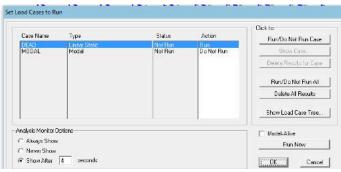


Travatura Reticolare Spaziale—Fig. 2.2

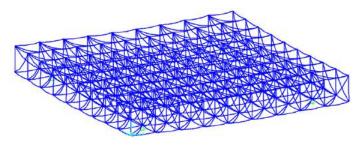
Definizione dei Vincoli —Fig. 2.3.2

Per determinare una **prima sezione** delle aste si è fatto riferimento alla normativa tecnica in merito alla snellezza massima, che non deve essere superiore al valore di 200 (λ <200).

Essendo a conoscenza che la formula che determina la snellezza è pari al rapporto tra la lunghezza libera di inflessione e il raggio di inerzia minimo ($\lambda = lo/\rho_{min}$) possiamo trovare il raggio di inerzia minimo che ci permette di scegliere una prima sezione all'interno dei formulari (fig. 3).


Dxt mm	Peso kg/m	Sezione di passaggio cm2	Sezione metallica cm2	Momento di inerzia J = cm4	Modulo di resistenza W = cm3	Raggio di inerzia i = cm
33,7 x 2,6	2,010	6,380	2,540	3,090	1,840	1,100
33,7 x 2,9	2,220	6,110	2,810	3,360	1,990	1,090
33,7 x 3,2	2,420	5,850	3,070	3,600	2,140	1,080
42,4 x 2,6	2,570	10,90	3,250	6,460	3,050	1,410
42,4 x 2,9	2,840	10,50	3,600	7,060	3,330	1,400
42,4 x 3,2	3,110	10,20	3,940	7,620	3,590	1,390
48,3 x 2,6	2,950	14,60	3,730	9,780	4,050	1,620
48,3 x 2,9	3,270	14,20	4,140	10,70	4,430	1,610
48,3 x 3,2	3,590	13,80	4,530	11,60	4,800	1,600

Profilario Sezioni Cilindriche Cave—Fondazione Promozione Acciaio—Fig. 3

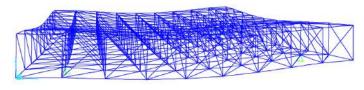

Abbiamo così determinato la sezione delle aste e scelto la classe di acciaio da utilizzare (S275). Una volta **definita la sezione e il materiale** siamo passati ad una prima analisi delle reazioni vincolari delle cerniere (fig.4.1), in relazione ai soli pesi della struttura in assenza di carichi non propri (fig.4.2), e alla deformazione delle aste sotto tale peso (fig.4.3).

Joint	F3
Text	KN
8	19,062
40	21,609
168	21,609
182	19,062
Totale	81,342

Tabella Reazioni Vincolari Fig. 4.1

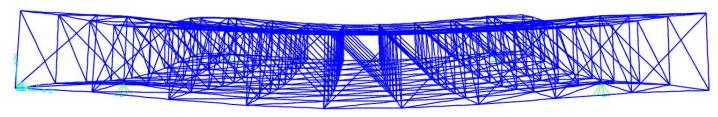


Attivazione dei soli pesi strutturali - Fig. 4.2

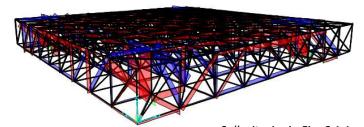


Deformazione Aste Fig. 4.3

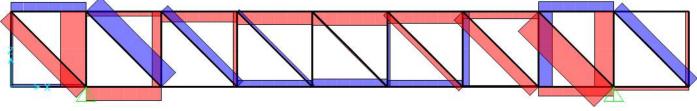
Successivamente all'analisi dei carichi strutturali abbiamo inserito le **forze** determinate dal peso (*fig. 5.1.1 - fig.5.1.2*) che la nostra reticolare deve sorreggere (ovvero il peso dei 4 piani superiori) definendo la nuova reazione dei vincoli e la conseguente nuova deformazione (*fig.5.2.1 - fig5.2.2*).



Attivazione delle Forze—Fig. 5.1.1


Deformata—Fig. 5.2.1

Attivazione delle Forze—Fig. 5.1.2

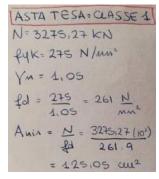


Deformata—Fig. 5.2.2

Abbiamo inoltre evidenziato i diagrammi delle sollecitazioni (fig. 6.1.1—fig.6.1.2) al fine di individuare più facilmente il posizionamento delle aste maggiormente sollecitate (a tensione e a compressione).

Sollecitazioni - Fig. 6.1.1

Sollecitazioni - Fig. 6.1.2


È stato successivamente estrapolato da Sap2000 un file Excel che riporta per ogni asta la sollecitazione che va ad influire su di essa. Dopo aver ordinato in le aste dalla più tesa alla più compressa (la tabella è stata riportata a fine relazione) abbiamo suddiviso le aste in 8 classi (4 a trazioni e 4 a compressione) e preso le 4 aste che risultavano maggiormente sollecitate al fine di studiare le loro dimensioni strutturali (*fig. 7.1*). È possibile dimensionare solo le aste più sollecitate di tali classi in quanto i loro valori risulteranno sicuramente accettabili anche dalle restanti.

ASTE COMPRESSE						
Classe	P min (kN)	P max (kN)	n. aste			
1	-4905,676	-945,582	105			
2	-944,525	-430,1	105			
3	-429,973	-177,356	105			
4	-175,541	4,3	105			

ASTE TESE							
Classe	P min (kN)	P. max (kN)	n. aste				
1	3275,271	686,907	105				
2	683,139	234,009	105				
3	233,708	86,82	105				
4	85,729	-55,605	105				

Tabelle Aste Compresse e Tese per classi - Fig. 7

Dopo aver calcolato manualmente i valori dell' area minima, in grado di rispondere adeguatamente allo sforzo, e dell'inerzia minima delle aste compresse (fig.8.1.1) e di quelle tese (fig.8.1.2), per le quali è utile solo il calcolo dell'area minima, abbiamo consultato il precedente formulario al fine di individuare le dimensioni di ciascuna asta, in relazione alle sollecitazione alle quali è sottoposta, e ponendo particolare attenzione affinché tutti i valori scelti dal formulario risultassero superiori ai valori minimi richiesti (fig. 8.2.1—fig.8.2.2)

Calcolo Area minima delle Aste Tese - Fig. 8.1.2

ASTA COMPRESSA = CLASSE 1
N = -4905,68 KN
fyk = 275 NIMM2
X но = 1105
fyd = 261,9 N/mm2 (Puk)
Amn = N = 4905,68 KN Pd 261,9 White
= 180 an ²
E= 210 000 HPav B=1 6=34
In Nd. Co = 4405,08+34
Sun = \ \frac{1 \text{Lun}}{Ann} = \sqrt{\frac{2130}{480}} = 3,37 as
$\frac{\lambda = 60}{\text{Phin}} = \frac{300}{334} = 89.2$

Calcolo dell' Area e dell'Inerzia Minime delle Aste Compresse- Fig. 8.1.1

Calcolo dell'area minima da sforzo di compressione (resistenza materiale)					
N	fyk	γ m0	fyd	A_min	
kN	N/mm2		N/mm2	cm2	
-4905,68	275,00	1,05	261,90	187,31	
-944,53	275,00	1,05	261,90	36,06	
-429,97	275,00	1,05	261,90	16,42	
-175,54	275,00	1,05	261,90	6,70	

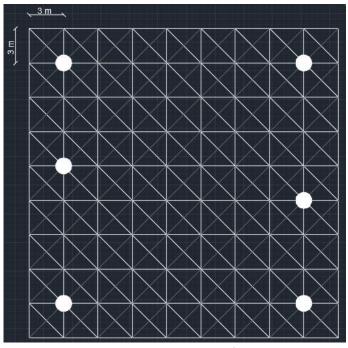
Calcolo dell'inerzia minima per sforzo di compressione (instabilità euleriana)						
Е	beta	l Lam* rho_min l_mi				
Мра		m		cm	cm4	
210000,00	1,00	3,00	88,96	3,37	2130	
210000,00	1,00	3,00	88,96	3,37	410	
210000,00	1,00	3,00	88,96	3,37	187	
210000,00	1,00	3,00	88,96	3,37	76	

Ingegnerizzazione	Profilato (E	N10210)				
A_design	I_design	rho_min	rho_min lam			
cm2	cm4	cm		mm	mm	
188,0	84846	21,20	14,15	610,00	10,00	
37,6	2699	8,47	35,42	244,50	5,00	
17,1	393	4,80	62,50	139,70	4,00	
11,2	172	3,93	76,34	114,30	3,20	

Tabelle di dimensionamento delle Aste sottoposte a Compressione - Fig.8.2.1

Calcolo dell'area minima da sforzo normale di trazione						Profilato (EN:	10210)
N	fyk	γm	f _d	A_min	A_design	D_int	t
kN	Мра		Мра	cm2	cm2	mm	mm
3275,27	275,00	1,05	261,90	125,06	126,00	508,00	8,00
683,14	275,00	1,05	261,90	26,08	29,60	193,70	5,00
233,71	275,00	1,05	261,90	8,92	9,06	76,10	4,00
85,73	275,00	1,05	261,90	3,27	3,73	33,70	4,00

Tabelle di dimensionamento delle Aste sottoposte a Trazione - Fig.8.2.2


Dall'analisi effettuata abbiamo notato come le aste più vicine ai vincoli siano anche quelle maggiormente sollecitate e che vi siano presenti in tale struttura, nei tratti interni tra le cerniere, aste completamente scariche (fig. 9).

Ci siamo inoltre domandati come si potesse fare per **ridurre i valori** delle sollecitazioni all'interno delle aste e sono stati ipotizzati due interventi: aumentare il numero di vincoli o variare l'altezza della reticolare.

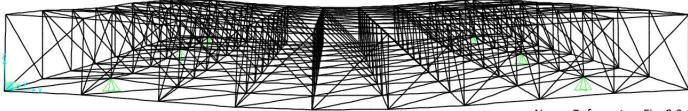
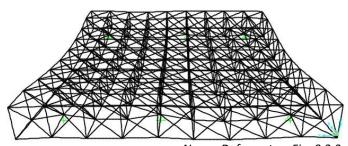
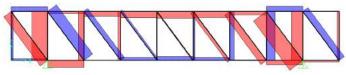

In un **primo tentativo** abbiamo inserito ulteriori due cerniere (*fig.9.1*), in asse con le precedenti, si è notata: una diminuzione della deformazione della reticolare, tramite l'analisi virtuale (*fig.9.2.1—fig.9.2.2*), e, tramite le tabelle che evidenziano gli sforzi, una variazione media del 30% circa delle sollecitazioni (*fig.9.3*) alle quali sono sottoposte le aste.

TABLE: Element Forces - Frames					
Frame P					
3	0				
126	0				
737	0				
807	0				


Aste Scariche—Fig. 9

Nuova Configurazione—Fig. 9.1



Nuova Deformata—Fig. 9.2.1

Nuova Deformata—Fig. 9.2.2

In un **secondo tentativo** abbiamo provato ad alzare la reticolare di 1,00 m così da ottenere una struttura composta da parallelepipedi e non cubi. Tale modifica ha permesso una riduzione degli sforzi massimi di trazione e compressione (fig.9.4.1) di circa il 10% per la compressione e di 15% per la trazione (fig.9.4.2—fig.9.4.3).

Nuova Configurazione delle sollecitazioni — Fig. 9.4.2

ASTE COI	MPRESSE	ASTE TESE	
n. Vincoli	P min (kN)	n. Vincoli	P max(kN)
4	-4905,676	4	3275,271
6	-3067,551	6	2128,712

Variazione degli Sforzi Assiali —Fig. 9.3

ASTE COMPRESSE		ASTE TESE	
Altezza (m)	P min (kN)	Altezza (m)	P min (kN)
3	-4905,676	3	3275,271
4	-4471,085	4	2624,169

Nuova Variazione degli Sforzi Assiali—Fig. 9.4.1

Nuova Configurazione della Deformata—Fig. 9.4.3

TABELLA ASTE TESE E COMPRESSE (Rif. pg. 3)

TABLE: Element Forces - Frames		
Frame	P	
653	-4905,676	
122	-3712,524	
209	-3671,773	
717	-3483,62	
662	-3365,02	
10	-3360,718	
651	-3223,5	
145	-3129,894	
721	-3074,243	
116	-2480,069	
568		
	-2093,659	
663	-2088,308	
657	-2055,655	
17	-1902,198	
740	-1898,317	
715	-1892,305	
71	-1830,167	
804	-1784,039	
37	-1770,205	
459	-1768,565	
544	-1764,763	
553	-1754,012	
58	-1746,99	
739	-1743,537	
73	-1726,17	
468	-1707,258	
686	-1683,641	
86	-1616,954	
84	-1611,775	
762	-1596,025	
109	-1583,74	
392	-1567,644	
167	-1563,886	
695	-1558,017	
771	-1548,829	
535	-1542,863	
677	-1530,495	
294	-1511,919	
307		
	-1507,36	
374	-1497,936	
393	-1495,202	
578	-1487,644	
158	-1453,477	
629	-1445,915	

60	-1437,145
620	-1411,331
601	-1406,012
308	-1403,736
638	-1391,228
450	-1390,318
176	-1386,871
658	-1370,55
477	-1364,798
45	-1359,606
405	-1340,579
747	-1333,245
632	-1326,639
8	-1312,762
753	-1310,527
573	-1271,409
610	-1270,609
38	-1253,56
383	-1250,599
115	-1240,943
42	-1234,969
478	-1228,042
592	-1206,965
303	-1198,984
252	-1186,049
490	-1184,181
320 230	-1181,569
725	-1181,449
526	-1174,328
	-1173,48
780	-1153,4
726	-1122,851
712	-1112,339
483	-1111,821
99	-1106,327
672	-1102,318
668	-1101,289
806	-1096,257
200	-1095,804
516	-1094,719
104	-1083,06
414	-1079,853
211	-1074,808
243	-1068,548
205	-1063,277
441	-1062,395

55	-1044,807
222	-1034,813
131	-1033,207
261	-1031,174
704	-1027,613
611	-1013,721
149	-997,233
641	-983,187
223	-975,107
499	-961,816
525	-953,125
748	-949,525
562	-945,582
507	-944,525
705	-943,547
218	-940,998
117	-937,453
493	-935,438
337	-932,069
423	-931,391
517	-931,269
587	-929,926
797	-928,859
97	-927,988
365	-924,069
432	-921,733
431	-917,56
636	-909,673
329	-906,32
627	-903,4
155	-895,683
240	-893,962
346	-892,688
185	-889,502
202	-880,239
285	-876,844
757	-866,107
113	-863,086
508	-862,171
422	-850,24
666	-837,755
289	-827,934
488	-777,957
139	-775,976
47	-756,921
338	-755,7

440	-753,574
328	-750,726
575	-748,754
91	-747,432
388	-738,909
714	-738,433
96	-731,934
356	-715,766
583	-714,408
602	-714,399
619	-710,801
744	-703,556
347	-703,069
671	-681,425
201	
	-680,729
224	-671,65
502	-661,529
355	-661,456
270	-653,18
379	-647,85
234	-637,164
32	-630,916
563	-617,605
235	-616,015
675	-610,889
556	-609,462
295	-600,616
661	-596,267
398	-591,96
681	-591,851
723	-581,698
413	-580,696
152	-579,374
696	-576,814
593	-575,377
810	-572,549
706	-570,27
584	-569,421
547	-566,431
534	-549,495
577	-549,316
498	-536,414
566	-534,549
192	-532,625
408	-532,585
68	-531,84
	301,04

590	-530,475
766	-525,573
596	-520,94
287	-520,888
542	-511,364
276	-510,324
51	-504,807
581	-500,273
191	-499,395
296	-497,084
249	-483,426
244	-482,421
144	-472,612
210	-460,916
101	-456,246
193	-455,78
650	-455,775
129	-452,322
684	-446,391
7	-445,712
551	-445,551
315	-443,166
380	-442,975
370	-439,51
724	-430,1
6	-429,973
789	-429,544
298	-422,821
325	-422,276
164	-421,999
618	-416,83
486	-408,12
417	-407,755
215	-402,274
449	-401,01
401	-400,136
788	-400,123
511	-399,29
18	-391,272
128	-387,12
253	-386,003
756	-382,739
703	-380,887
659	-378,695
809	-378,623
319	-375,114

140	-372,457
277	-368,084
760	-366,474
599	-364,298
286	-360,279
372	-358,981
496	-354,45
457	-352,648
381	-349,074
183	-344,445
687	-339,911
769	-339,518
114	-339,363
267	-338,035
182	-337,453
466	-334,465
78	-330,896
36	-328,601
316	-326,213
647	-326,137
258	-325,805
533	-318,613
278	-315,854
371	-315,518
173	-315,509
138	-314,983
572	-314,39
505	-309,917
718	-309,781
262	-309,392
11	-308,149
334	-303,588
361	-301,827
154	-296,865
750	-295,559
465	-293,454
309	-285,185
268	-285,02
623	-282,023
571	-277,718
364	-274,413
803	-273,803
538	-271,26
147	-265,99
153	-265,139
162	-264,238

693	-259,68
112	-256,215
426	-255,166
778	-246,39
795	-246,132
271	-236,936
363	-236,132
448	-235,651
323	-229,843
640	-228,442
514	-225,438
214	-225,114
456	-223,109
352	-218,357
332	-217,947
411	-217,121
343	-216,506
690	-214,239
605	-212,815
231	-202,861
404	
	-202,365
520	-200,288
100	-199,814
313	-199,766
134	-197,973
403	-196,862
608	-195,524
811	-193,926
362	-193,434
734	-192,033
735	-192,033
678	-191,115
471	-187,742
133	-187,38
2	-184,322
475	-182,872
390	-177,356
80	-175,541
174	-174,093
67	-172,737
729	-167,942
279	-166,88
121	-164,533
550	-161,074
127	-159,912
130	-159,912

787	-159,098
83	-156,491
722	-150,259
247	-150,142
353	-149,375
473	-148,023
420	-146,169
742	-141,955
751	-141,934
813	-139,278
259	-135,776
529	-132,621
523	-130,876
237	-129,201
447	-127,138
775	-127,029
341	-122,534
697	
312	-122,524 -121,706
227	
462	-120,629 -118,834
43	
	-118,407
429	-117,417
560	-114,997
435	-113,6
782	-104,796
217	-102,616
438	-102,555
280	-102,452
54	-99,437
796	-94,829
541	-93,795
474	-93,095
344	-87,994
59	-87,043
212	-85,855
559	-81,903
532	-77,157
669	-75,73
543	-72,072
72	-70,73
791	-69,691
630	-68,14
727	-66,479
654	-65,019
644	-64,674

741	-63,963
464	-62,601
773	-61,391
93	-61,12
397	-60,619
64	-59,611
489	-59,609
98	-59,463
46	-58,567
758	-55,781
85	-55,605
302	-47,446
305	-46,545
256	-46,473
194	-46,006
453	-44,542
49	-43,438
702	-43,161
326	-42,225
184	-41,668
219	-40,332
171	-39,848
569	-36,957
444	-35,17
617	-34,34
635	-30,3
670	-28,777
389	-28,33
439	-27,678
419	-25,57
238	-25,095
428	-24,992
165	-24,935
159	-24,205
354	-23,735
458	-23,328
269	-22,002
524	-21,015
335	-19,718
555	-18,497
437	-17,225
455	-16,073
12	-15,739
168	-15,354
781	-14,409
614	-11,524

446	-11,145
105	-6,823
772	-5,049
229	-4,3
764	-3,558
746	-0,98
3	0,20
126	0
737	0
807	0
92	1,289
749	1,386
805	2,039
142	3,041
767	5,032
161	11,066
410	12,899
146	16,3
512	17,859
503	19,121
297	20,033
196	20,77
15	22,258
621	23,741
118	25,78
482	26,133
387	26,787
123	28,519
350	28,963
609	30,629
206	31,171
492	32,368
688	34,855
755	39,443
588	40,305
427	43,516
733	45,229
552	45,731
567	45,976
322	47,368
88	48,043
221	49,389
597	50,027
250	
418	51,923 53,944
81	
01	54,427

467	57,914	69	
660	58,026	75	
470	59,331	682	
521	64,731	530	
79	65,348	373	
382	65,828	445	
300	66,462	232	
759	68,057	694	
63	68,089	248	
526	68,552	351	
2	75,936	394	
79	76,5	633	
36	76,551	124	
)5	78,637	324	
187	79,922	557	
0	82,587	731	
66	82,826	785	
55	83,658	768	\neg
33	83,727	624	\neg
.08	84,093	360	
39	85,056	576	\neg
84	85,729	648	
76	86,82	579	
94	94,142	66	
00	95,869	615	
28	97,499	391	
808	98,484	777	
94	98,558	150	
06	98,69	402	
72	98,966	673	
333	99,429	265	
32	100,027	314	
738	100,377	399	$\neg \uparrow$
177	104,308	513	
85	106,469	790	\neg
542	107,05	359	
574	108,605	369	
06	112,581	136	
107	113,005	102	
342	113,954	691	
86	115,206	779	$\neg \uparrow$
556	116,131	720	$\neg \uparrow$
111	116,342	246	$\neg \uparrow$
109	118,132	40	\dashv
637	118,753	284	$\neg \uparrow$
304	121,417	317	\neg

69	123,097
75	123,215
682	123,698
530	126,69
373	127,889
445	129,687
232	133,014
694	136,742
248	137,051
351	137,832
394	139,202
633	139,586
124	139,988
324	140,837
557	141,156
731	145,606
785	148,203
768	150,097
624	152,4
360	153,751
576	154,441
648	155,144
579	156,832
66	160,867
615	161,942
391	164,453
777	166,238
150	167,157
402	167,565
673	169,567
265	169,96
314	170,595
399	172,119
513	172,167
790	172,6
359	174,851
369	175,669
136	176,558
102	176,765
691	178,33
779	179,646
720	181,4
246	184,326
40	185,767
284	186,004
317	186,644

241	186,954
586	187,62
454	187,831
699	187,865
709	187,991
378	188,181
156	188,206
522	188,333
430	188,693
754	191,952
800	
275	193,608
	194,41
539	194,82
345	198,282
34	200,06
190	201,61
612	202,163
711	203,136
160	210,515
463	211,876
814	212,498
546	212,559
645	216,016
228	219,311
293	220,332
41	223,368
266	223,534
199	223,887
257	225,834
548	225,838
132	226,15
386	230,078
476	232,071
169	233,708
163	234,009
700	238,834
53	241,344
187	243,768
461	245,827
504	249,893
181	253,252
16	260,67
368	
	265,203
178	265,478
180	268,491
631	269,083

692	270,337	501	
151	270,631	561	
743	271,575	495	
515	272,12	701	
125	272,486	274	
815	274,252	765	
4	276,671	52	
5	276,671	558	
291	281,096	600	
260	282,229	589	
784	282,93	242	
531	285,388	674	
683	286,732	745	
376	290,216	506	
377	291,099	716	\top
598	292,562	680	\top
35	296,186	497	\top
172	304,2	664	十
607	304,266	549	\top
327	312,149	616	十
603	315,287	251	\top
639	324,645	254	十
421	326,76	452	
412	327,759	537	十
213	328,42	812	\top
331	329,532	263	\top
290	332,371	479	十
336	333,794	299	\top
9	334,187	301	十
186	337,263	245	十
798	344,184	255	\top
77	349,271	367	\top
585	354,382	481	\top
141	368,247	527	十
594	369,973	39	\top
216	372,976	622	\top
175	382,158	87	\top
288	386,206	236	\top
801	396,23	518	\top
565	397,272	340	+
70	399,811	13	\top
318	403,312	272	+
225	406,56	536	+
208	414,379	106	+
416	414,777	170	+
540		281	+
J40	415,64	201	

501	416,374
561	418,683
495	425,43
701	433,127
274	436,766
765	443,924
52	446,38
558	448,38
600	449,989
589	451,594
242	457,766
674	458,476
745	468,128
506	483,949
716	488,759
680	489,114
497	489,23
664	490,523
549	502,521
616	506,168
251	515,921
254	521,126
452	522,061
537	535,092
812	535,454
263	546,113
479	550,099
299	550,136
301	555,4
245	558,129
255	565,47
367	569,656
481	571,037
527	578,258
39	580,845
622	581,072
87	586,011
236	595,932
518	599,174
340	605,096
13	608,074
272	615,656
536	617,534
106	619,449
170	622,92
281	643,307

94	643,498
509	643,824
282	650,959
197	651,079
793	656,802
485	669,593
425	671,347
220	671,517
283	679,103
189	683,139
685	686,907
500	695,562
491	705,873
545	729,348
595	
443	734,386
	734,747
339	736,446
510	736,724
770	743,273
195	743,56
348	749,86
358	760,726
433	767,799
349	771,75
802	775,17
528	778,565
424	780,565
203	785,159
330	789,131
434	789,772
226	809,327
292	809,59
442	826,114
264	827,262
580	833,679
63	841,346
357	842,332
415	846,748
89	851,721
591	856,637
166	857,116
273	861,049
519	862,163
48	864,32
90	870,681
	884,364

613	894,235
625	894,983
564	899,022
137	901,83
120	912,229
554	915,61
480	921,238
375	927,326
406	936,686
451	938,31
707	948,764
233	949,856
179	950,186
713	950,882
366	952,547
310	957,58
708	960,584
604	961,852
188	962,329
649	969,125
774	973,056
643	976,907
792	983,341
396	989,373
689	1000,907
311	1020,065
143	1023,494
460	1034,677
384	1039,074
74	1041,944
665	1048,926
582	1054,92
76	1058,729
148	1097,396
799	1111,248
107	1118,148
698	1118,901
395	1121,059
61	1126,637
57	1135,903
1	1160,735
783	1161,475
469	1162,683
728	1174,421
761	1224,86
652	1232,867

1232,867
1242,445
1246,605
1268,925
1302,241
1332,156
1342,831
1371,451
1372,222
1442,675
1490,856
1492,431
1513,139
1580,678
1670,758
1727,229
1829,092
1894,724
2668,485
2785,824
3248,872
3275,271