TRAVE RETICOLARE 3D

Grazie al software SAP2000 è possibile calcolare la deformata e le azioni assiali agenti su una trave reticolare importando la struttura tridimensionale costruita in AutoCAD e salvata in formato dxf, appartenente a un layer diverso da 0, ricordando di impostare nel nuovo modello di SAP2000 l'unità di misura.

Dopo aver impostato una tolleranza pari a 0.01 ai nodi grazie al comando *Merge Joints*, si evita la sovrapposizione delle aste costruite in AutoCAD.

La costruzione del sistema prosegue con l'assegnazione dei vincoli, posti alla base del sistema reticolare.

A questo punto è possibile definire la sezione delle aste attraverso la scelta delle sue caratteristiche.

e Section		
Section Name		sezione tubolere) Modify/Show Notes
Properties Section Properties	Property Mod	lífiers Material ers ▲ A992Fy50 ▼
— Dimensions Outside diameter (13) Wall thickness (tw)	0.1 5E-03	Display Color
	OK	Cancel

Per semplicità si assegna carico proprio nullo attraverso la gestione del Self Weight Multiplier:

e si assegnano i carichi verticali concentrati sui nodi di valore 10KN/m^2; considerando ogni asta orizzontale di lunghezza 2 m, per ogni nodo si applicherà una forza di [100KN/m^2]x[(2x2)m^2]=40KN. Questo è possibile attraverso il percorso di comandi: Assign \rightarrow Joint Loads \rightarrow Forces sostituendo lo "0" di default nel campo delle forze di direzione parallela all'asse z con il valore "-40", in cui il segno negativo indica il verso della forza.

A questo punto mancano da stabilire l'assegnazione delle caratteristiche di sezione precedentemente scelte e il "rilascio dei momenti ai nodi".

La prima azione si svolge grazie al comando Frame Sections in Assign \rightarrow Frame,

mentre il secondo in Assign Frame Releases, liberando i momenti in entrambi gli estremi di ogni asta a seguito della loro selezione.

Assign Frame Releases	Die Leit Ven Defen Beige Dans Beiert Beige Aufges Degin Degin Onten Innte Beige Dig Die non / B + 5 B ≠ B ≠ B D Bei ein n = Oder n = Nath, cliftett = 1 = 0 +	
Release Frame Partial Fixity Springs Start End Avial Load Image: Start Shear Force 2 (Major) Image: Start Torsion Image: Start Moment 32 (Minor) Image: Start Moment 33 (Major) Image: Start		
No Releases Units KN. m. C OK Cancel		

A questo punto è possibile avviare il calcolo grazie al comando Run non considerando il calcolo relativo alle sollecitazioni sismiche indicate dal termine *Modal*

N	-		ae.	
Case Name	Type	Status	Action	Run/Do Not Run Case
MODAL Model	Modal	Not Run Not Run	Do Not Run	Show Case
				Delete Results for Case
				Run/Do Not Run All
				Delete All Results
				Show Load Case Tree
Analysis Monitor C)ptions			Model-Alive
C Always Show				Bun Now
C Never Show				

I risultati sono:

La deformata

e il diagramma delle azioni assiali

