
Esercitazione 1 - Progetto di una travatura reticolare spaziale in acciaio


La travatura spaziale reticolare presa in esame, ha un modulo di 2x2x2 m e si sviluppa per una superficie di 16x24 metri. La struttura deve sostenere quattro piani ed una luce di 20 m presentando uno sbalzo verso l'esterno concepito come un modulo di 2 m verso ogni lato considerando un totale di quattro appoggi.

Si è quindi dato il comando "Release partial fixity" assegnando un rilascio nel momento a tutti i nodi in modo da ottenere delle cerniere interne ed assegnata una sezione Pipe section di default a tutti gli elementi della struttura.

Successivamente si sono inserite delle cerniere esterne nei punti designati per gli appoggi.

Una volta determinata la struttura si necessita di distribuire i carichi ai nodi e per farlo c'è bisogno di calcolare il peso proprio della struttura. Questo si ottiene assegnando il Load pattern DEAD e avviando l'analisi dell'intera struttura ottenendo le tabelle dei risultati (Join reaction) sommando fra loro le reazioni vincolari verticali di ogni appoggio presente.

Si giunge quindi a: peso proprio della struttura = 105.96 + 105.96 + 143.50 + 143.50 = 498.92 KN

A questo valore va sommato il peso totale dei 4 piani che poggiano sulla struttura secondo il seguente procedimento.

10 KN/ m² (peso standard di 1 m² di solaio compreso di pesi accidentali) x

384 m² (superficie della travatura reticolare)

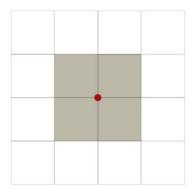
4 (numero dei piani) = 15.360 KN

Si sommano quindi 15.360 e 498,92 ottenendo 15.858,92 KN che rappresenta il carico totale.

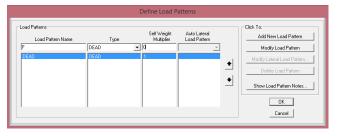
Per ottenere il carico puntuale in ogni nodo si divide il carico totale per la superficie della trave:

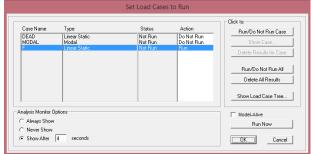
 $15.858,92 / 384 = 41,3 \text{ KN/ } \text{m}^2$

Questo valore rappresenta la forza da applicare per metro quadro. Infatti nei nodi agli estremi del rettangolo 24x16 si avrà tale valore in quanto l'area di pertinenza del nodo è di 1 mq.

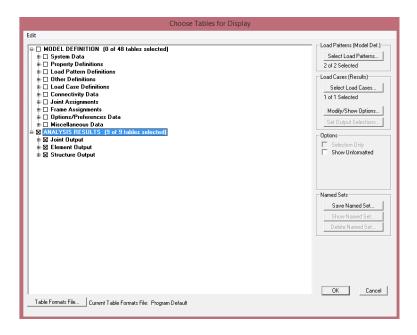

Nei nodi perimetrali si avrà un raddoppio del carico concentrato in quanto l'area interessata è di 2 mq.

Il valore sarà quindi: $41,3 \text{ KN/ } \text{m}^2 \text{ x 2 } \text{m}^2 = 82,6 \text{ KN}$




Nei nodi centrali, seguendo lo stesso ragionamento, avendo un'area di 4 mq il carico effettivo sarà:

$$41,3 \text{ KN/} \text{ m}^2 \text{ x } 4 \text{ m}^2 = 165,2 \text{ KN}$$



Una volta assegnati tutti i carichi si può procedere con il comando "Run analysis" e dare il comando "Run" solo al caso di forza F che è stato creato comprensivo dei suddetti calcoli e distribuzione delle forze.

A questo punto utilizzando il comando "Display" – "Show tables" si possono esportare su Excel i valori dati dall'analisi della struttura selezionando "Element output".

A questo punto si eliminano i dati non necessari al dimensionamento della struttura e delle aste compresse e tese.

Dividendo poi la colonna denominata P in sei sottogruppi per ottimizzare le sezioni, tre per i valori negativi delle aste compresse e tre per i valori positivi relativi alle aste tese, si può passare al dimensionamento.

4	Α	В	С	D								
1	TABLE: Element Forces - Frames											
2	Frame	Station	P	FrameElem								
3	1	0	-387,267	1-1								
4	2	0	-383,386	2-1								
5	3	0	-342,987	3-1								
6	4	0	-334,758	4-1								
7	5	0	-315,533	5-1								
8	6	0	-304,095	6-1								
9	7	0	-297,049	7-1								
10	8	0	-283,501	8-1								
11	9	0	-270,596	9-1								
12	10	0	-259,299	10-1								
13	11	0	-213,945	11-1								
14	12	0	-213,945	12-1								
15		0	-188,669	13-1								
16	14	0	-188,669	14-1								
17	15	0	-183,927	15-1								
18	16	0	-183,768	16-1								
19	17	0	-183,768	17-1								
20	18	0	-179,273	18-1								
21	32	0	-174,543	32-1								
22	33	0	-172,333	33-1								

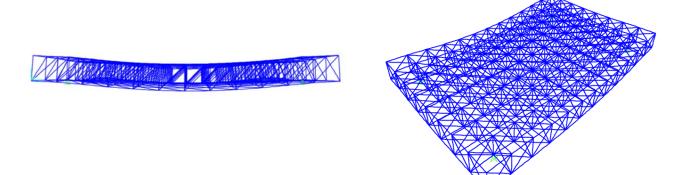
Inserendo i valori delle forze selezionati è possibile scegliere il profilato adatto basandosi sul fatto che l'area della sezione metallica del profilato deve essere maggiore dell'area minima calcolata.

Aste tese

Calcolo dell'area minima da sforzo normale di trazione									
N	fyk	V m	f _d	A_min	A_design				
kN	kN Mpa 263,26 235,00 58,32 235,00		Mpa	cm2	cm2				
263,26			223,81	11,76	12,50				
58,32			223,81	2,61	2,81				
23.12	235.00	1.05	223.81	1.03	2.54				

Aste compresse

Calcolo dell'area minima da sforzo di compressione (resistenza materiale)				Calcolo dell'inerzia minima per sforzo di compressione (instabilità euleriana)					Ingegnerizzazione sezione e verifica snellezza per una membratura principale (< 200)					
N	fyk	Y m0	fyd	A_min	Е	beta	1	Lam*	rho_min	l_min	A_design	l_design	rho_min	lam
kN	N/mm2		N/mm2	cm2	Mpa		m		cm	cm4	cm2	cm4	cm	
-387,27	235,00	1,05	223,81	17,30	210000,00	1,00	2,00	96,23	2,08	75	19,10	437,00	4,78	41,84
-62,55	235,00	1,05	223,81	2,79	210000,00	1,00	2,00	96,23	2,08	12	2,81	3,36	1,09	183,49
-23,59	235,00	1,05	223,81	1,05	210000,00	1,00	2,00	96,23	2,08	5	2,54	3,09	1,10	181,82


Nel caso delle aste compresse risulta determinante che il valore della snellezza non superi il valore dato dalla normativa uguale a 200.

Tubi in Acciaio a sezione circolare

d x s mm	Peso kg/m	Sezione di passaggio cm2	Sezione metallica cm2	Momento di Inerzia J = cm4	Modulo di resistenza W = cm3	inerzia i = cm
33,7 x 2,6	2,010	6,380	2,540	3,090	1,840	1,100
33,7 x 2,9	2,220	6,110	2,810	3,360	1,990	1,090
33,7 x 3,2	2,420	5,850	3,070	3,600	2,140	1,080
42,4 x 2,6	2,570	10,90	3,250	6,460	3,050	1,410
42,4 x 2,9	2,840	10,50	3,600	7,060	3,330	1,400
42,4 x 3,2	3,110	10,20	3,940	7,620	3,590	1,390
48,3 x 2,6	2,950	14,60	3,730	9,780	4,050	1,620
48,3 x 2,9	3,270	14,20	4,140	10,70	4,430	1,610
48,3 x 3,2	3,590	13,80	4,530	11,60	4,800	1,600
60,3 x 2,9	4,140	23,30	5,230	21,60	7,160	2,030
60,3 x 3,2	4,540	22,80	5,740	23,50	7,780	2,020
60,3 x 3,6	5,070	22,10	6,410	25,90	8,580	2,010
76,1 x 2,6	4,750	39,50	6,000	40,60	10,70	2,600
76,1 x 2,9	5,280	38,80	6,670	44,70	11,80	2,590
76,1 x 3,2	5,800	38,20	7,330	48,80	12,80	2,580
76,1 x 3,6	6,490	37,30	8,200	54,00	14,20	2,570
88,9 x 2,6	5,570	55,00	7,050	65,70	14,80	3,050
88,9 x 3,2	6,810	53,50	8,620	79,20	17,80	3,030
88,9 x 3,6	7,630	52,40	9,650	87,90	19,80	3,020
88,9 x 4,0	8,430	51,40	10,70	96,30	21,70	3,000
114,3 x 3,6	9,900	90,10	12,50	192,0	33,60	3,920
114,3 x 4,0	11,00	88,70	13,90	211,0	36,90	3,900
114,3 x 4,5	12,10	87,10	15,50	234,0	41,00	3,890
139,7 x 2,9	9,860	141,0	12,50	292,0	41,80	4,840
139,7 x 3,6	12,20	138,0	15,40	357,0	51,10	4,810
139,7 x 4,0	13,50	136,0	17,10	393,0	56,20	4,800
139,7 x 4,5	14,90	134,0	19,10	437,0	62,60	4,780

Di seguito sono riportate le deformazioni della travatura reticolare date dall'analisi con Sap2000.

