Esercitazione 5_Studio ripartizioni di forze sismiche in struttura controventata da telai

Esercitazione 5_Studio ripartizioni di forze sismiche in struttura controventata da telai

Scopo di questa esercitazione è quello di analizzare la ripartizione delle forze sismiche in una struttura di un edificio ad un piano. Le forze sismiche sono forze orizzontali e per far fronte a questo, è necessario dotar l’edificio di controventi; il telaio rappresenta un controvento “naturale”, adatto a far fronte a forze orizzontali.                         In questo caso si è scelto di dotare l’edificio di telai shear-type: questi sono un modello idealizzato, dotato di una trave molto resistente, che ha il compito di assorbire la grande parte del taglio e del momento.

 

Per svolgere l’analisi della struttura, è necessario delineare dei telai, sia in orizzontale che in verticale: in base a questo, è possibile andare ad analizzare le rigidezze del telaio, in quanto la rigidezza del telaio è la somma delle rigidezze dei pilastri che ne fanno parte.

Trattandosi di un telaio shear-type, la rigidezza del singolo pilastro è pari a 12EJ/l3 ; tuttavia, andando a considerare telai di più pilastri, la rigidezza sarà 12E/l3 *(J1 + J2 +…Ji).

È anche necessario notare come, a livello di pianta, i pilastri, essendo rettangolari saranno regolati in base a come sono tessuti i telai, per essere dotati di maggior momento d’inerzia (in pilastri rettangolari bh3/12) nella direzione utile al telaio; avendo scelto pilastri di sezione rettangolare 0,5*0,3, in cemento armato.

Una volta individuati i telai, questi vengono rappresentati con delle molle, che rappresentano la rigidezza del telaio nel piano dell’impalcato: questo simbolo rappresenta la natura intrinseca nel vincolo, che è un vincolo elastico: con questo si intende la capacità che ha di deformarsi sotto sforzo, e poi di tornare alla sua posizione una volta terminata la spinta della forza esterna.

Grazie lo strumento di excel, è possibile calcolare in modo veloce la ripartizione delle forze sismiche attraverso vari step: il primo è stato quello di inserire nelle tabelle i valori dei parametri per il calcolo delle rigidezze dei diversi telai; i parametri sono i seguenti:

-E (modulo di elasticità) = per la classe di calcestruzzo armato scelta C25/30 il valore del modulo di Young è 31500 MPa (N/mm2);

-J (momento di inezia) = bh3/12, calcolato in base all’orientamento dei telai: per i telai verticali Jx, per quelli orizzontali Jy;

-H (altezza dei pilastri) = molto influente nel calcolo perché viene inserita con l’esponente alla 3.

Vengono così calcolati direttamente i valori delle rigidezze dei telai che formano la struttura.

Sono poi riassunti nel secondo step tutte le rigidezze dei vari controventi, riportate insieme alle rispettive distanze dal punto di origine O, preso coincidente con il pilastro 1. Le distanze dei vari controventi serviranno per calcolare le coordinate del centro delle rigidezze.

Prima del calcolo del centro di rigidezze, che è il punto dove si concentrano idealmente le forze reattive di tutti i controventi, è necessario andare a trovare il centro di massa, o baricentro, che è invece il punto dove idealmente si concentrano tutte le forze esterne, che spingono il corpo a trasformarsi.

Per calcolare il centro di massa è necessario scomporre l’area totale in delle aree semplificate, andando a trovare i baricentri delle singole, per poi risalire a quello dell’intera struttura.

XG=15,78 ; YG= 5,22

Una volta calcolato il baricentro, si può passare al calcolo del centro delle rigidezze: le coordinate vengono ottenute attraverso le seguenti formule:

Xc= K*/Ko_tot  ;   Yc= K* / Kv_tot

Dove K*(momento risultante delle rigidezze)= k1*d1 + k2*d2 + k3* d3 …+ki*di

Successivamente viene calcolata la rigidezza torzionale totale, grazie alla formula: ∑koi* doi2 +∑ kvi* dvi2

Per l’analisi delle forze sismiche è necessario calcolare la risultante di queste forze: questa viene calcolata basandosi sui carichi sia di natura permanente G, sia di natura accidentale Q, che vengono moltiplicati per l’area dell’impalcato su cui agiscono; questi poi vengono moltiplicati per un coefficiente sismico, il coefficiente di contemporaneità Ψ (=0,80) ottenendo il fattore W(pesi sismici) il quale, moltiplicato per un altro coefficiente c (=0,10), di intensità sismica, dà il valore della forza sismica orizzontale F (KN).

Infine tramite il foglio excel è possibile anche osservare la ripartizione delle forze sismiche orizzontali lungo x e lungo y (Fx; Fy):i pilastri non effettuano traslazioni sulla base, in quanto questi sono incastrati, ma traslano nell’estremità opposta, ottenendo al contempo un momento torcente. Questo dipende dalla forza sismica orizzontale che viene moltiplicata per la differenza delle coordinate delle ordinate del centro di rigidezze – il centro di massa: Mx= F(YC-YG).

La traslazione lungo l’asse x (u_o) si ottiene dalla formula F= k*δ, dove δ= u_o= F/k_otot.

Un altro valore importante è la rotazione dell’impalcato, generata dal rapporto del momento torcente e della rigidezza torsionale totale. Φ= Mx/ Ktot.

Infine vengono poi indicate per ogni controvento, le forze che vi agiscono, queste sono ottenute dal prodotto della rigidezza del controvento, della sua distanza dall’origine e infine della rotazione dell’impalcato.

Lo stesso viene ottenuto anche per le forze sismiche che agiscono lungo l’asse y.

Si ricrea lo stesso modello su SAP, per verificare i risultati ottenuti: trattandosi di un impalcato infinitamente rigido ci si aspetta una semplice traslazione di tutto l’impalcato, ottenuta dalla deformazione dei pilastri ad “S”, secondo il modello sher-type, con il punto di nullo del momento a ½ dell’altezza.

-si ridisegna la struttura;

-vengono incastrati i pilastri a terra, secondo il modello shear-type;

-vengono definite le sezioni degli elementi: i pilastri 1-2-3-4-5-6 vengono dotati di una sezione di 0,5*0,3m, i pilastri 7-8-9-10 vengono dotati di una sezione di 0,3*0,5m, mentre le travi vengono realizzate di sezione 0,4*1,0m. Inoltre, sono state modificati i moduli di elasticità dei pilastri, per renderli conformi a il dato utilizzato in excel (31500 N/mmq), sia è stato cresciuto esponenzialmente il modulo E delle travi, per renderle infinitamente rigide, cercando di raggiungere il più possibile il modello ideale di shear-type.

-è poi necessario inserire il centro delle rigidezze, utilizzando le coordinate ottenute su excel:

Xc= 18,79  Yc= 3,74

-si assegna un vincolo interno (diaphragm) in modo da rendere l’impalcato rigido;

-si assegna la forza sismica ottenuta su excel (F=170,64 KN), facendola agire sul centro delle rigidezze della struttura.

-si effettua l’analisi e si osservano i risultati:

come previsto, la deformata mostra una traslazione rigida dell’impalcato (la rotazione è praticamente irrisoria) e la deformazione dei pilastri avviene tramite la forma ad S;

-il grafico del momento mostra come questo nei pilastri sia lineare, e praticamente come si annulli, tralasciando piccolissimi errori decimali ad ½ dell’altezza dei pilastri;