ESERCITAZIONE 4_DIMENSIONAMENTO DI UN PILASTRO

La quarta esercitazione consiste nel dimensionamento di un pilastro nelle tre varie tecnologie: legno, acciaio e calcestruzzo.

Per l’esercitazione ho preso in considerazione il pilastro maggiormente sollecitato a sforzo normale (N) di un edificio di 3 piani; uno di quelli presenti a piano terra sui quali scarica il peso dell'intera struttura sovrastante.

Ho ripreso la pianta di carpenteria utilizzata nella prima esercitazione in modo da poter riutilizzare i valori dei carichi dei solai.

L'area di influenza del pilastro è di 24 mq. (L1= 4 m ; L2= 6 m)

LEGNO

- Dopo aver inserito i dati relativi alla grandezza del solaio ed aver trovato l'area di influenza del pilastro, calcolo il peso unitario della travep e della traves

trave= area della sezione (0,30 x 0,40) mq x peso specifico 6 KN/m3 = 0,72 KN/m

 

Posso calcolare il carico dovuto al peso proprio delle travi 

q trave= (trave p x L1 x 1,3) + (trave s x L2 x 1,3) = 9,36 KN

 

- Per calcolare il valore complessivo del carico agente, inserisco i valori dei carichi agenti sul solaio: carichi strutturali, carichi permanenti e carichi accidentali

q solaio= (1,3 x qs + 1,5 x qp + 1,5 x qa) x A = 191,36 KN

 

- Per finire calcolo lo sforzo di compressione N

N= (q trave x q solaio) x n piani= 602 KN

 

 

Posso così calcolare l’ area minima necessaria affinché il materiale non entri in crisi.

- Inserisco i dati relativi al materiale:

 

la resistenza a compressione (fc0,k) 24MPa

 

il coefficiente della durata di carico kmod  0,8

 

il coefficiente parziale di sicurezza γm. 1,45

 

e ricavo il valore della tensione ammissibile e dell'area minima:

fc0d= fc0,k x kmod / γm. = 13,24 MPa

A min= 454,8 cm2

 

 

- Sapendo che Il modulo di elasticità E = 8800 MPa, β =1 e l’altezza del pilastro è di 3 m, posso calcolare:

valore massimo di snellezza λmax = 80,95

valore minimo del raggio di inerzia ρmin = 3,71 cm

la grandezza della base minima (b min) = 12,84 cm, che ingegnerizzo a b = 15 cm. 

l’altezza minima hmin =   Amin / b = 30,32 cm, che ingegnerizzo a h = 35 cm

                                                                    

- Calcolo  l’area di progetto della sezione

Adesign = b x h = 525 cm2

 

- Verifico che Adesign > Amin   

 

525 cm2 >  454,8 cm2               

 

SEZIONE VERIFICATA

 

ACCIAIO

Dopo aver inserito i dati relativi alla grandezza del solaio ed aver trovato l'area di influenza del pilastro, calcolo il peso unitario della trave p e della trave s

 

trave p = IPE 270 = 36,1 Kg/m = 0,361 KN/m

 

trave s = IPE 120 = 10,4 Kg/m = 0,104 KN/m

 

Posso calcolarmi così il carico dovuto al peso proprio delle travi 

q trave= 2,69 KN

 

- Per calcolare il valore complessivo del carico agente, inserisco i valori dei carichi agenti sul solaio: carichi strutturali, carichi permanenti e carichi accidentali 

q solaio= (1,3 x qs + 1,5 x qp + 1,5 x qa) x A = 202,39 KN

 

- Per finire calcolo lo sforzo di compressione N

N= (q trave x q solaio) x n piani= 615 KN

 

Posso così calcolare l’ area minima necessaria affinché il materiale non entri in crisi.

- Inserisco i dati relativi al materiale:

tensione di snervamento (f,yk) 275MPa

                                          

il coefficiente parziale di sicurezza γm. 1,05

 

Ricavo così il valore della tensione ammissibile e dell’area minima

 

fyd= fyk / γm = 261,90 MPa

 

A min= 23,5 cm2

 

 

- Sapendo che Il modulo di elasticità E = 210000 MPa, β =1 e l’altezza del pilastro è di 3 m, posso calcolare:

valore massimo di snellezza λmax = 88,96

valore minimo del raggio di inerzia ρmin = 3,37 cm

calcolo il momento di inerzia minimo Imin =  267 cm4

 

- rispetto ai valori ricavati posso ingegnerizzare la sezione scegliendo un profilo HEA con valori maggiori rispetto a quelli minimi trovati. Scelgo un profilo HEA 140

 

- Verifico che Adesign > Amin

 

31,4 cm2 > 23,5 cm2           

 

- Verifico che  λ <  λ*

 

85,23 <  88,96

 

SEZIONE VERIFICATA

 

CALCESTRUZZO

- Dopo aver inserito i dati relativi alla grandezza del solaio ed aver trovato l'area di influenza del pilastro, calcolo il peso unitario della travep e della traves

trave= area della sezione (0,30 x 0,55) mq x peso specifico 24 KN/m3 = 3,96KN/m

 

Posso calcolare il carico dovuto al peso proprio delle travi 

q trave= (trave p x L1 x 1,3) + (trave s x L2 x 1,3) = 51,48 KN

 

- Per calcolare il valore complessivo del carico agente, inserisco i valori dei carichi agenti sul solaio: carichi strutturali, carichi permanenti e carichi accidentali. 

q solaio= (1,3 x qs + 1,5 x qp + 1,5 x qa) x A = 263,77 KN

 

- Per finire calcolo lo sforzo di compressione N

N= (q trave x q solaio) x n piani= 946 KN

 

 

Posso così calcolare l’ area minima necessaria affinché il materiale non entri in crisi.

- Inserisco i dati relativi al materiale:

 

la tensione di snervamento fck = 40 MPA

 

 ricavo :

 fcd =  22,7 MPa

 

Amin = 417,2 cm2 

 

bmin = 20,4 cm

 

- Sapendo che Il modulo di elasticità E = 210000 MPa, β =1 e l’altezza del pilastro è di 3 m, posso calcolare:

valore massimo di snellezza λmax = 95,62

valore minimo del raggio di inerzia ρmin = 3,14 cm

la grandezza della base minima (b min) = 10,87 cm, che ingegnerizzo a b = 40 cm

l’altezza minima (h min) = 10,43 cm, che ingegnerizzo a  h = 40 cm

 

- Verifico che Adesign > Amin

 

1600 cm2 > 417,2 cm2                 

 

- Per il calcestruzzo devo inoltre verificare che la tensione massima sia minore della resistenza di progetto: σmax <  fcd

 

14,15 MPA <  22,7 MPA           

 

SEZIONE VERIFICATA