ESERCITAZIONE 2

Per la seconda esercitazione andremo a dimensionare la trave maggiormente sollecitata di un impalcato strutturale ad uso residenziale. Calcoliamo quanto pesa un metro quadro del nostro solaio (espresso come densità di carico superficiale in kN/m2). Studieremo il caso di un salaio di legno, uno di laterocemento e uno di acciaio con lamiera grecata.
Divideremo il carico totale in qs (kN/m2) (carico dovuto al peso della struttura), il carico permanente qp (kN/m2) (carico di tutto ciò che grava sulla struttura), e il carico accidentale qa (kN/m2) (in questo caso 2,0 kN/m2 cioè il carico accidentale previsto da normativa per gli edifici residenziali). 
Per calcolare il peso al metro quadro del solaio sommiamo tutti i pesi di tutti gli elementi tecnologici presenti. Il loro peso specifico (kN/m3) si moltiplica per la quantità di volume del materiale presente in un metro quadro (m3/m2). Dal calcolo si ottengono i pesi espressi in kN/m2 che sommati individueranno i nostri qp e qs.
La normativa impone l'utilizzo di coefficienti moltiplicativi dei singoli carichi, che forniscono il carico totale come una combinazione di carico, espressa dalla formula seguente: qtot [KN/m2] = 1,3*qs + 1,5*qp + 1,5*qa  per lo stato limite ultimo con cui vanno calcolati. Da questo carico dobbiamo ricavare il carico agente sulla trave (qu) derivante dalla moltiplicazione di qtot per l'interasse della trave. A questo punto bisogna determinare il momento massimo agente sulla trave Mmax = qul2/8 (considerando il modello di trave appoggiata appoggiata).
L'impalcato che andremo ad analizzare è il seguente, la trave analizzata è evidenziata in rosso e la sua area di influenza è di 15mq.

1)    TRAVE IN LEGNO

 

 

 

Nel dimensionamento di una sezione di una trave in legno il progettista deve scegliere il tipo di legno da utilizzare e quindi inserire nella colonna corrispondente la resistenza caratteristica a flessione fm,k del legno prescelto a seconda della tecnologia (legno massiccio o legno lamellare) e ad una classe di resistenza. 

Consideriamo il GL 24c ed inseriamo nella tabella Excel la resistenza caratteristica a flessione fm,k.

La tensione di resistenza fd sarà a sua volta pari a fd = (kmod*fm,k)/γm

Kmod è un coefficiente diminutivo che considera l’effetto della durata del carico e le condizioni di umidità.

Ipotizzando un carico permanente, una classe di servizio 2 e un legno lamellare, avremo un valore kmod pari a 0,6 (come da normativa).

Il coefficiente γm è invece un coefficiente parziale di sicurezza del materiale e vale 1,45

Ora, con il foglio excell fornitoci, andiamo a calcolare la sezione della trave di legno. Inseriamo le informazioni sulla geometria dell'impalcato, le caratteristiche del materiale e le tensioni di progetto, calcoliamo il momento massimo e con la tensione di resistenza e una base di partenza di 40cm andiamo a calcolare l'altezza minima. 

hmin= (Mmax/b)0.5 * (6/fd)0.5 = 36,08 cm.

Ingegnerizzando l'altezza minima scegliamo un profilo quadrato di 40x40cm.

2) TRAVE IN ACCIAIO

Per dimensionare la sezione in acciaio procediamo individuando il modulo di resistenza a flessione minimo da utilizzare affinché la tensione del materiale non superi la tensione di progetto. 

fyd è la tensione di progetto e si calcola a partire dalla tensione caratteristica di snervamento divisa per un coefficiente di sicurezza γs pari a 1,05.

Fyd = Fyk/γs

Se consideriamo l'acciaio Fe 430/S275, con una tensione di snervamento caratteristica di 275 MPa, otteniamo un Wx,min di 338,12 cm3.
 
Wx,min = Mmax/fyd

Wx,min è il valore minimo della sezione che posso scegliere per il dimensionamento. Con un Profilario di IPE in acciaio scegliamo una sezione con un Wx più grande.
La IPE270 con Wx = 429 cm3.

3) TRAVE IN CEMENTO ARMATO

In questo caso teniamo conto delle due diverse tensioni di progetto: del cls (fcd) e dell’acciaio (fyd).

Scelta una base, determinato il Momento massimo e δ (5cm) possiamo proseguire con la scelta della sezione da utilizzare.

Iniziamo scegliendo il tipo di acciaio ed il tipo di calcestruzzo, individuando prima fyk ed fck (le resistenze caratteristiche), poi li riduciamo ottenendo fcd e fyd (le tensioni di progetto del calcestruzzo e dell’acciaio)

fyd = fyk/γs             fcd = αcc(fck/γc)

γs  è il coefficiente parziale di sicurezza relativo all’acciaio (pari a 1,15), αcc è il coefficiente riduttivo per le resistenze di lunga durata (0,85) e γc il coefficiente parziale di sicurezza relativo al cls, pari a 1,5.

Scegliamo un acciaio B450A (con fyk = 450 MPa) ed un calcestruzzo ordinario C 25/30 (fck = 30 MPa).

Scegliendo la base della sezione di 30cm e noti i valori delle tensioni di progetto, determiniamo hu (l’altezza utile della sezione, pari all’altezza totale meno δ), da cui poi otterremo appunto una Hmin (altezza minima della sezione).

Hmin = hu + δ

hu = r(Mmax/b)0.5    con r = (2/[fcd*(1-β/3)*β])0.5      e     β= fcd/(fcd+fyd/n)

L’altezza minima andrà poi ingegnerizzata in eccesso. Nel nostro caso quindi, ottenendo una hu = 33,42 cm avremo una Hmin= 38,42cm, che ingegnerizziamo prendendo un’altezza H = 40cm.

A questo punto è necessario aggiungere al carico totale qu il peso stesso della trave (calcolato con il peso specifico del cls armato che è pari a 3 kN/m). Se l’altezza minima risultante sarà ancora minore dell’altezza ingegnerizzata la sezione risulterà verificata anche una volta aggiunto il peso proprio della trave.
Da qui la necessità di aumentare l'altezza della sezione H=45cm.