DIMENSIONAMENTO DI UNA TRAVATURA RETICOLARE SPAZIALE_Lozonschi_Miloro

• DISEGNO GEOMETRICO 

Imposto la griglia come base per disegnare il modulo della reticolare. Il modulo avrà dimensioni 3x3x3 m e sarà controventato dalle diagonali. La reticolare ha 14 moduli lungo Y e 6 lungo X.

• [ File/ new model / only grid ]

• [ Draw frame ]

Seleziono tutte le diagonali e creo un gruppo ‘‘diagonali’’ per facilitare l’analisi della struttura in diverse parti perché le diagonali avendo una lughezza maggiore e quindi un diverso raggio d’inerzia, andranno dimensionate separatamente.

• [ Define / group / add new group ]

• [ Assign / assign to group ]

Imposto la vista 2D sul piano X-Y con Z=0, seleziono tutta la struttura e inserisco le cerniere interne, interrompendo la continuità del momento tra le aste connesse, le aste reticolari sono elementi strutturali soggetti solo a sforzo assiale. Dal comando release / partial fixity spunto ‘‘start’’ e ‘‘end’’ sul momento in direzione 2-2 e 3-3. Una volta rilasciati i momenti, definisco il materiale dal comando ‘‘define materials’’ scelgo l’acciaio S355 secondo le NTC2008. A questo punto importo un’ipotetica sezione tubolare cavo da sagomario ( D244,5x5,4 mm) e l’assegno a tutte le aste, da modificare successivamente dopo aver effettuato il dimesionamento.

• [ Assign / frame / release-partial fixity ]

• [ Define / section properties / frame section / import new property / steel / pipe ]

• [ Assign / frame / frame section ]

Dal disegno della pianta realizzata su CAD individuo i punti di appoggio della reticolare ai setti. Una volta individuati applico i vincoli esterni mettendomi sulla vista X-Y con Z=0.

• [ Assign / joint / restraints ]

 

• ASSEGNAZIONE DEI CARICHI

L’edificio ipotizzato ha una struttura reticolare spaziale che regge 4 piani sospesi. Ogni piano occupa una superficie di 756 mq (ogni cubo della reticolare ha un’area di 6 mq).

Devo calcolare il carico di stato ultimo qu facendo l’analisi dei carichi del solaio tipo. Scelgo un solaio in acciaio.

• Destinazione d’uso : Uffici qa = 2,00 KN/m2

• qs = qlamiera+ qc.a=2,00 KN/m2

• qp = qgres+ qmassetto+ qisolante+ qimpianti+ qtramezzi+ qcontrosoffitto= 4,57 KN/m2

qu = 2,00 KN/m2x 1,3 +4,57 KN/m2x 1,5+ 2,00 KN/m2x 1,5 = 12,45 KN/m2

Per ogni pilastro viene considerata l’area di influenza, dove per i perimetrali l’area di influenza è la metà e per gli angolari è 1/4 mentre per quelli centrali è massima ovvero 36 mq. L’area di influenza dei restanti pilastri e dei setti la trovo da ‘‘properties’’ selezionando la polilinea. Ogni pilastro è agganciato alla reticolare da tiranti in acciaio che si ancorano ai nodi della reticolare. 

Pn,centrali = n x qu x An,centrali = 4 x 12,45 KN/m2 x 36 m2 = 1792,8 KN
Pn,perimetrali = Pnodi centrali / 2 = 896,4 KN
Pn,angolari = Pnodi perimetrali / 2 = 448,2 KN 
Pn1,setti = (n x qu x An1,setti ) / 4= 1008,45 KN (4 nodi sul setto) 
Pn2,setti = (n x qu x An1,setti ) / 3= 896,4 KN (3 nodi sul setto)
Pn = (n x qu x An1,setti )= 1344,6 KN 

Definisco il carico P trovato da applicare ai nodi come forza concentrata con moltiplicatore di peso proprio pari a 0. A questo punto, dalla vista 2D sul piano X-Y con Z=3, seleziono i nodi superiori della reticolare presenti nella vista.

• [ Define/ load patter / add new load pattern ]

• [ Assign / joint loads / forces ] 

• SOLLECITAZIONI

Una volta applicati i vincoli interni, la sezione, i vincoli esterni e i carichi, posso far partire l’analisi con il comando run analysis e avvio solo il load pattern P (carichi concentrati) non considerando il peso proprio della reticolare. Visualizzo la deformata e i grafici degli sforzi assiali (controllo dal grafico dei momenti che questi siano nulli sulle aste).

• DIMENSIONAMENTO ASTE COMPRESSE E TESE

Per il dimensionamento dei profili esporto le tabelle da SAP selezionando solo il carico P assegnato ai nodi. Prima di esportare in Excel posso modificare le station dal comando ‘‘output station’’ impostando come numero minimo di station il valore 1, in quanto ,se progettata bene, la reticolare avrà sforzi assiali costanti per l’intera lunghezza dell’asta. Esportate le tabelle, è necessario riordinarle ulteriormente:

- Ordino la colonna station in ordine crescente ed elimino ciò che non mi serve.

- Ordino i valori dello sforzo Nd dal più piccolo al più grande in modo da separare le aste compresse da quelle tese.

• [ Ctrl + T / analysis results / frame output ]

• [ Assign / frame / output station ] 

Per semplificare l’assegnazione dei profili dimensionati alle aste posso fare un’approssimazione dividendo in macrogruppi le aste tese e compresse sia per le diagonali D che per le aste O/V scegliendo la sezione più sollecitata. 

• ASSEGNAZIONE PESO PROPRIO DELLA RETICOLARE

Per considerare il peso proprio della reticolare devo assegnare i profili dimensionati alle aste. Considero una media delle sezioni. Definisco la nuova sezione su SAP e l’assegno a tutte le aste. La sezione da assegnare è 323,9 x 5,9 mm.

• [ Define / section properties / frame section / add new property / steel / pipe ]

• [ Assign / frame / frame section ] 

Assegnate le sezioni, avvio l’analisi con il peso proprio DEAD. La struttura è in equilibro statico se la somma delle reazione vincolari verticali (cerniere assegnate) e dei carichi verticali, in questo caso il peso proprio, è nulla. Quindi dal comando ’’joints reactions’’ esporto su Excel le reazioni vincolari e sommando le F3 (asse locale verticale) ottengo il valore del peso proprio.

A questo punto creo un nuovo load pattern Pp con moltiplicatore di peso proprio uguale a 0 e lo aggiungo. Lo devo assegnare ai nodi centrali, perimentrali e angolari in quanto hanno aree di influenza diverse. Imposto la vista X-Y con Z=3 e seleziono i nodi.

n.centrali = 65

n.perimetrali = 36/2 = 18

n.angolari = 1

n.tot = 84

Pn.centrali = Pp / ntot = 1339,942 /84 = 15,95 KN/m2

Pn.perimetrali = Pn,centrali / 2 = 7,97 KN/m2

Pn.angolari = Pn,perimetrali / 2 = 3,98 KN/m2

• COMBINAZIONE DI CARICO Pp - P

Assegnati il peso proprio Pp e il P ai nodi definisco una combinazione di carico per verificare quanto incide il peso proprio sulla struttura.

Mando l’analisi con la combinazione e verifico sulle tabelle esportate nuovamente su Excel se gli sforzi assiali non sono troppo distanti dai valori iniziali. All’incirca l’aumento è del 10 %.

 


Sforzi assiali dalla COMBO1


Sforzi assiali del Carico P

 

 

 

 

 

 

 

 

 

 

 

 

 

• VERIFICA DI DEFORMABILITA’

Devo verificare di quanto si abbassi la reticolare e per essere soddisfatta, l’abbassamento maggiore non deve superare un 1/200 della distanza maggiore tra gli appoggi. Per verificare la deformabilità devo assegnare il carico allo stato limite di esercizio ed esportare gli abbassamenti. Prendo lo spostamento maggiore e verifico che sia minore di L/200, dove L è la distanza massima. Mi creo il carico d’esercizio, lo distribuisco ai nodi in base alla loro area di influenza e mando l’analisi. 

• [ Define/ load patter / add new load pattern ]

• [ Assign / joint loads / forces ]

qe = qs x 1 + qp x 0,7 + qa x 0,7 = 6,6 KN/m2

qe = 2,00 KN/m2 x 1 + 4,57 KN/m2 x 0,7+ 2,00 KN/m2 x 0,7 = 6,60 KN/m2

Dalle tabelle risulta che il valore massimo di abbassamento è di 3,6 cm che soddisfa la verifica di deformabilità in quanto L/200= 23000 cm/200= 11,5 cm.