Progetto di un edificio multipiano in calcestruzzo in zona non sismica

Studentesse: Mariani Lucia, Maurelli Ilaria

Progetto della geometria
Abbiamo progettato un edificio regolare in
calcestruzzo armato con le seguenti caratteristiche:
Dimensioni della pianta: 22,00x12,00 metri
- Altezza totale: 10,50 metri
- Altezza interpiano: 3,50 metri
- Numero di piani: 3
- Lievi aggetti: mensole di 2,00 metri
- Gabbia scala con travi a ginocchio di dimensioni  2,50x4,00 metri
- Comportamento a telaio

 

 

Analisi dei carichi
Dopo aver definito la geometria, abbiamo
definito i carichi superficiali distribuiti su un metro quadrato di solaio che, dopo essere stati convertiti in carichi linearmente distribuiti, dovranno essere assegnati alle aste orizzontali.
Queste ultime sono state differenziate, dopo aver definito l'orditura del solaio, in travi principali e travi secondarie e, successivamente, sono state suddivise anche in base al carico agente su di esse.

Tassonomie delle travi
- Travi principali perimetrali
   Interasse 2,00 metri
   (Portano il peso proprio, il peso del solaio e il peso del tompagno)
- Travi principali centrali
   Interasse 4,00 metri
   (Portano il peso proprio e il peso del solaio) 
Travi secondarie perimetrali
   
Interasse 0,50 metri
   (Portano il peso proprio e il peso del tompagno)
- Travi secondarie centrali
   Interasse 1,00 metri
   (Portano il peso proprio)

Abbiamo quindi calcolato i carichi agenti su un metro quadrato di solaio suddividendoli nelle tre categorie
- Carico permanenti strutturali
- Sovraccarico permanente non strutturale
- Carico accidentali

Analisi dei carichi di un solaio in laterocemento

  1. Pavimentazione in parquet
    2 cm = 0,02 m
  2. Massetto
    3,00 cm = 0,03 m
  3. Isolante
    4,00 cm = 0,04 m
  4. Soletta collaborante
    5,00 cm = 0,05 m 
  5. Pignatte
    20,00 cm = 0,20 m
  6. Travetti
    20,00 cm = 0,20 m
  7. Intonaco
    1,50 cm = 0,015 m

​Spessore totale solaio = 35,50 cm = 0,355 m

Calcolo del carico distribuito superficiale

  1. 0,02 m x 7,20 KN/m3 = 0,144 KN/m2
  2. 0,03 m x 20,00 KN/m3 = 0,60 KN/m2
  3. 0,04 m x 0,20 KN/m3 = 0,008 KN/m2
  4. 0,05 m x 25,00 KN/m3 = 1,25 KN/m2
  5. 2 (0,20 x 0,12 x 1,00) KN/m3 x 25 KN/mc = 1,20 KN/m2
  6. 2 (0,38 x 0,20 x 1,00) m3/m2 x 15 KN/mc = 2,28 KN/m2
  7. 0,015 m x 18,00 KN/m3 = 0,27 KN/m2

- Carico strutturale qs
   Soletta + Travetti + Pignatte
   1,25 KN/m2 + 1,20 KN/m2 + 2,28 KN/m2 = 4,73 KN/m2
- Sovraccarico permanente qp
   Parquet + Massetto + Isolante + Intonaco + Incidenza impianti + Incidenza tramezzi
   0,144 KN/m2 + 0,60 KN/m2 + 0,008 KN/m2 + 0,27 KN/m2 + 0,50 KN/m2 + 1,00 KN/m2 = 2,52 KN/m2 = 2,52 KN/m2
- Carico accidentale qa
   Dato fornito dalla normativa in base alla destinazione d’uso = 2,00 KN/m2

A questo punto abbiamo considerato le combinazioni di carico fornite dalla normativa per le verifiche agli stati limite, utilizzando coefficienti parziali di sicurezza sfavorevoli.

Combinazione di carico allo stato limite ultimo SLU
γs qs + γp qp + γa qa = 1,30 x 4,73 KN/m2 + 1,50 x 2,52 KN/m2 + 1,50 x 2,00 KN/m2 = 12,89 KN/m2 = 12,90 KN/m2
qu = 12,90 KN/m2
Combinazione di carico allo stato limite d’esercizio SLE
γ̃s qs + γ̃p qp + γ̃a qa = 1,00 x 4,73 KN/m2 + 0,70 x 2,52 KN/m2 + 0,70 x 2,00 KN/m2 = 7,88 KN = 7,90 KN/m2
qe = 7,90 KN/m2

Successivamente abbiamo calcolato il carico linearmente distribuito del tompagno che andrà a gravare sul perimetro dell’edificio (travi principali perimetrali, travi secondarie perimetrali)

Analisi dei carichi del tompagno 

  1. Intonaco esterno
    2,00 cm = 0,02 m
  2. Isolante
    5,00 cm = 0,05 m
  3. Rasante
    1,00 cm = 0,01 m
  4. Blocchi in laterizio forati
    20,00 cm = 0,20 m
  5. Intonaco interno
    2,00 cm = 0,02 m

Spessore totale tompagno = 30,00 cm = 0,30 m
Altezza totale tompagno =
(altezza interpiano) - (spessore del solaio) =
350,00 cm - 35,50 cm = 314,50 cm = 3,145 m

Calcolo del carico distribuito lineare
0,02 m x 3,145 m x 18,00 KN/m3 = 1,13 KN/m
0,05 m x 3,145 m x 0,20 KN/m3 = 0,03 KN/m
0,01 m x 3,145 m x 0,30 KN/m3 = 0,009 KN/m
0,20 m x 3,145 m x 8,00 KN/m3 = 5,00 KN/m
0,02 m x 3,145 m x 18,00 KN/m3 = 1,13 KN/m
Peso totale tompagno = 7,299 KN/m = 7,30 KN/m

Infine, grazie moltiplicando i carichi superficiali ottenuti rispettivamente per gli interassi delle membrature su cui agiscono, abbiamo ottenuto i carichi linearmente distribuiti da assegnare su SAP.

Carico dovuto al vento

Per quanto riguarda gli elementi strutturali verticali, abbiamo considerato un contributo del vento pari a 0,50 KN/m2 e, dopo aver suddiviso i pilastri in base al loro interasse, abbiamo calcolato il carico distribuito verticale agente su ogni pilastro nelle due direzioni x e y.

Tassonomie dei pilastri
- Pilastri perimetrali
   Interasse 5,00 metri
   (Subiscono il carico trasmesso dal solaio alle travi principali e l’azione orizzontale del vento lungo le due direzioni x e y)
- Pilastri angolari
   Interasse 2,50 metri
   (Subiscono il carico trasmesso dal solaio alle travi principali e l’azione orizzontale del vento lungo le due direzioni x e y)
- Pilastri centrali
   (Subiscono il carico trasmesso dal solaio alle travi principali per tutti i piani sovrastanti)

Pre dimensionamento
Per il pre dimensionamento delle membrature ci siamo basate su tre modelli fondamentali di aste:
- Mensola verticale
- Trave doppiamente appoggiata
- Mensola orizzontale

Pilastri
Modello: mensola verticale

Per pre dimensionare gli elementi strutturali verticali che compongono il nostro edificio, abbiamo per prima cosa effettuato il calcolo per la base minima di un pilastro in calcestruzzo di altezza 3,50 m
bmin = 2√3ρmin = 2√3 x 3,33 cm = 11,55 cm
Dividendo il valore dell'area minima ottenuta per questo valore della base, abbiamo trovato la dimensione minima dell'altezza del pilastro
hmin = 159,00 cm2 / 11,55 cm = 13,77 cm
Il pre dimensionamento è stato effettuato considerando una dimensione della base e dell'altezza dell'elemento maggiore rispetto alle dimensioni minime trovate in quanto, data l’entità della struttura e sulla base delle precedenti esercitazioni effettuate su SAP, il valore minimo risultava troppo piccolo per poter costituire la base di un pilastro in grado di resistere alle sollecitazioni agenti.
Lo sforzo di compressione utilizzato per il pre dimensionamento è stato calcolato considerando il carico allo stato limite ultimo moltiplicato per l’area di influenza del pilastro, a questo è stato aggiunto il peso proprio delle travi in calcestruzzo, il tutto moltiplicato per il numero di piani.
Dopo aver calcolato la tensione massima dovuta allo sforzo di compressione, abbiamo verificato che essa non superasse il valore della resistenza di calcolo a compressione del calcestruzzo scelto (C40/32)
N/A + Mt/Wmax < di fcd

Travi
Modello: trave doppiamente appoggiata
Per il pre dimensionamento degli elementi strutturali orizzontali abbiamo ipotizzato, sulla base delle precedenti esercitazioni effettuate su SAP, in aula e in autonomia, una dimensione delle travi compatibile con i carichi agenti sull’edificio, differenziando secondo le diverse tassonomie precedentemente elencate.
Il valore del momento flessionale considerato per il pre dimensionamento equivale al valore del momento massimo in campata per un modello di trave doppiamente appoggiata sottoposta a carico orizzontale linearmente distribuito, tale valore equivale a ql2/8.
Abbiamo poi definito le resistenze dei materiali: C32/40 per il calcestruzzo e acciaio S450 per le armature.
A questo punto, grazie alla teoria della flessione della trave, abbiamo potuto determinare i valori di β ed r.
Una volta determinati questi valori, abbiamo stabilito arbitrariamente una dimensione della base in modo tale da poter determinare l’altezza utile hu e di conseguenza l’altezza totale H minima della trave in calcestruzzo.
Aggiungendo poi, oltre ai carichi precedentemente considerati, anche il peso proprio della trave stessa, e ripetendo i calcoli, abbiamo potuto ottenere il valore reale dell’altezza minima H: questo valore ci è servito per verificare le dimensioni delle sezioni da noi precedentemente ipotizzate.

Mensole
Modello: mensola orizzontale
Per il pre dimensionamento delle mensole abbiamo effettuato lo stesso procedimento precedentemente utilizzato per il pre dimensionamento delle travi.
La sola differenza sta nella scelta del valore di calcolo del momento flessionale che, in questo caso, equivale al valore del momento massimo (in corrispondenza del vincolo di incastro) di una trave che presenta una estremità incastrata a un’altra estremità libera, sottoposta al medesimo carico orizzontale linearmente distribuito. Tale valore equivale a ql2/2.

Una volta verificate tutte le sezioni ipotizzate abbiamo quindi definito su SAP le dimensioni delle sezioni per ogni tipologia di elemento strutturale:

Dimensioni degli elementi che compongono il telaio
Pilastro piano terra = 32x44 cm 
Pilastro primo piano = 30x42 cm 
Pilastro secondo piano = 28x40 cm 
Travi principali = 60x30 cm 
Travi secondarie = 35x25 cm 
Mensole = 50x30 cm 

Dimensioni degli elementi che compongono la scala
Trave a ginocchio = 30x20 cm 
Cordolo = 45x30 cm 
Montanti = 30x30 cm 

 

Modellazione in SAP2000
Per la modellazione dell’edificio su SAP abbiamo seguito le seguenti fasi:

- Per prima cosa abbiamo modellato la geometria dell’edificio su SAP grazie alla griglia e gli strumenti di disegno “Frame” e “Special Joint” ;

- Abbiamo poi assegnato i vincoli esterni di tipo incastro alla base dei pilastri del piano terra;

- Per simulare un nodo rigido interno, abbiamo definito i rilasci agli estremi delle aste (non abbiamo assegnato nessun rilascio alle estremità, in questo modo la rotazione intorno a tutti gli assi nel punto di collegamento tra gli elementi è pari a zero);

- Per facilitare la successiva assegnazione dei carichi, abbiamo suddiviso i vari elementi del modello in diversi gruppi:

Pilastri 0 _ Angolari
Pilastri 0 _ Perimetrali
Pilastri 0 _ Centrali
Pilastri 1 _ Angolari
Pilastri 1 _ Perimetrali
Pilastri 1 _ Centrali
Pilastri 2 _ Angolari
Pilastri 2 _ Perimetrali
Pilastri 2 _ Centrali
Travi principali _ Perimetrali
Travi principali _ Centrali
Travi secondarie _ Perimetrali
Travi secondarie _ Centrali

Corpo scala

 

- Grazie a tale suddivisione abbiamo assegnato agli elementi strutturali le sezioni precedentemente definite;

- Successivamente abbiamo definito i carichi fissando il relativo fattore moltiplicatore del peso proprio “Load Patterns”, in questo modo abbiamo potuto considerare il peso proprio di ogni singolo elemento che compone il modello grazie al carico PP:

Qs (0)
Qp (0)
Qa (0)
PP (1)
Vento X (0)
Vento Y (0)

- Abbiamo poi definito le diverse combinazioni di carico “Load Combination” moltiplicando ogni singolo carico per il relativo coefficiente parziale di sicurezza:

- Combinazione allo stato limite ultimo: SLU
   Qs (1,3)
   Qp (1,5)
   Qa (1,5)
   PP (1,3)
- Combinazione: Vento lungo la direzione X
   SLU (1)
   Vento X (1)
- Combinazione: Vento lungo la direzione Y
   SLU (1)
   Vento Y (1)

- Dopo aver definito i carichi, abbiamo assegnato a ogni elemento strutturale i rispettivi valori del carico distribuito ottenuti dall’analisi dei carichi precedentemente svolta;

- Per simulare una struttura a telaio con impalcato rigido, abbiamo assegnato il vincolo “Diaphram” dalla voce “Costrains” per tutti gli elementi orizzontali presenti per ogni piano.
In questo modo, sotto l'effetto delle forze agenti, l'impalcato si comporterà come un corpo rigido;

- Avendo scelto delle sezioni rettangolari per gli elementi verticali, abbiamo orientato i singoli pilastri con l'asse d'inerzia maggiore lungo la direzione di maggiore sollecitazione per garantire una deformazione contenuta;

 

 

 

 

- A questo punto abbiamo avviato l’analisi del modello “Run Analysis”;

- Abbiamo visualizzato la configurazione deformata della struttura, in particolare gli spostamenti verticali in corrispondenza degli aggetti, e i diagrammi delle sollecitazioni agenti (N, T, M);

- In fine abbiamo esportato le tabelle Excel relative ai valori delle sollecitazioni nella combinazione di carico allo stato limite ultimo per la verifica degli elementi inflessi e pressoinflessi.

Verifica

Verifica delle aste orizzontali
Abbiamo sostituito i valori esportati dal modello nella tabella Excel relativa alla verifica delle travi principali, secondarie e delle mensole orizzontali e abbiamo controllato che la verifica fosse soddisfatta per ogni elemento.

Travi principali

Travi secondarie

Mensole

Verifica delle aste verticali

Abbiamo creato un altro file Excel in cui abbiamo calcolato l'eccentricità dello sforzo assiale agente sui pilastri, abbiamo suddiviso questi ultimi nei vari piani inserendo le tre categorie di eccentricità, piccola moderata e grande.
Abbiamo poi verificato di quanto lo sforzo assiale fosse decentrato rispetto all'asse baricentrico dell'asta, ripetendo questa considerazione per ogni piano.
Al piano terra l'eccentricità risulta piccola in quanto i pilastri sono maggiormente soggetti a sforzo normale di compressione; al primo piano si presentano i primi pilastri con eccentricità moderata mentre all'ultimo piano i  pilastri presentano anche valori di grande eccentricità.

L'aumento della dimensione dell'eccentricità, che è definita come rapporto tra il momento intorno all'asse x e lo sforzo normale, spiega la morfologia degli elementi verticali, data l'entità degli sforzi a cui essi sono sottoposti.

Pilastri

Eccentricità

Modello 3D