TERZA ESERCITAZIONE – Miriam Scaccia, Chiara Trebbi

Dimensionamento approssimativo di un edificio multipiano in calcestruzzo armato soggetto a forza sismica

L’obiettivo dell’esercitazione è quello di calcolare la ripartizione della forza sismica sull’edificio precedentemente modellato e verificare gli effetti conseguenti sui pilastri.

1. Definizione dei telai che compongono la struttura                                                                                            

In pianta si possono individuare nove telai, cinque paralleli all’asse y e quattro paralleli all’asse x:

Telaio 1v composto da: pilastri 1-6-11-16
Telaio 2v composto da: pilastri 2-7-12-17
Telaio 3v composto da: pilastri 3-8-13-18
Telaio 4v composto da: pilastri 4-9-14-19
Telaio 5v composto da: pilastri 5-10-15-20

 

Telaio 1o composto da: pilastri 1-2-3-4-5
Telaio 2o composto da: pilastri 6-7-8-9-10
Telaio 3o composto da: pilastri 11-12-13-14-15
Telaio 4o composto da: pilastri 16-17-18-19-20

 

I controventi possono essere schematizzati nel piano come molle:

Date le dimensioni dei pilastri individuate nell’esercitazione precedente, si possono determinare le rigidezze traslanti di ogni controvento nello STEP 1 della tabella Excel “Ripartizione forze sismiche” nei fogli “Piano terra”, “Piano primo”, “Piano secondo” rispettivamente per i telai di ogni piano.

Nello STEP 2 vengono elencate le rigidezze dei telai e le relative distanze dall’origine degli assi O.

2. Definizione del centro di massa                                                                                                                        

Si determina il centro di massa dell’impalcato che, nonostante abbia la bucatura dal vano scale, questa può essere considerata trascurabile in quanto la pianta dell’edificio è quasi simmetrica. Infatti, se si effettuano i calcoli includendo la bucatura, la variazione dell’ascissa del centro d’area è minima rispetto all’ascissa del centro calcolato trascurandola, mentre l’ordinata è la stessa. Per tanto si considera la pianta dell’edificio senza bucatura e di conseguenza il centro di massa coincide con il centro d’area e viene indicato nello STEP 3 come G (12 ; 6).

Di conseguenza si definisce nel modello SAP il centro di massa di ogni impalcato assegnandogli il diaphragm a seconda della quota in cui è posizionato.

3. Definizione del centro delle rigidezze                                                                                                                

Nello STEP 4 si individua il centro delle rigidezze del piano terra tramite le rigidezze dei telai e le loro distanze dall’origine degli assi. Il centro viene indicato come CPT (12,12 ; 6).

Il centro di massa e il centro delle rigidezze hanno la stessa ordinata ma non la stessa ascissa, quindi se l’impalcato è soggetto ad una forza lungo x trasla orizzontalmente, mentre se è soggetto ad una forza lungo y alla traslazione verticale si aggiunge la rotazione dovuta al momento della forza esterna che ha come braccio xC - xG = 0,12. Nonostante l’esigua differenza di ascissa tra i due centri, sono stati considerati non coincidenti studiando quindi anche la rotazione.

Si procede allo stesso modo per il piano primo e il piano secondo ricavando come centro delle rigidezze rispettivamente CPP (12,14 ; 6) e CPS (12,48 ; 6).

4. Definizione della forza sismica                                                                                                                          

Nello STEP 5 viene definita la forza sismica attraverso la combinazione di carichi permanenti e accidentali in base al piano analizzato, considerando come coefficiente di intensità sismica c quello relativo a Roma e quindi pari a 0,1.

La forza sismica si ripartisce diversamente sui controventi nelle due direzioni x e y. Si definiscono quindi Fx e Fy come load pattern e si applicano ai centri di massa di ogni impalcato con valori differenti in base ai piani:

PIANO TERRA Fx= Fy = 274,75 kN;

PIANO PRIMO Fx= Fy= 549,50 kN;

PIANO SECONDO Fx= Fy= 824,26 kN.

5. Definizione delle combinazioni di carico e analisi                                                                                             

Le forze Fx vengono combinate nella COMB1 e le forze Fy nella COMB2, insieme ai carichi Qs, Qp, Qa e PP, definiti nell’esercitazione precedente. Dopodiché si procede all’analisi prima per la COMB1 per ottenere gli effetti sui pilastri, successivamente lo stesso per la COMB2.

Tra le due combinazioni quella che produce una situazione maggiormente svantaggiata è la COMB1, come riportato dalla tabella Excel “Risultati analisi SAP”. Di conseguenza si osserva che rispetto alla precedente combinazione senza forza sismica (SLU) il momento sui pilastri è maggiore.

6. Verifica a pressoflessione                                                                                                                                 

Si procede a inserire i nuovi valori di N e M nella tabella Excel “Verifica pressoflessione”. Si osserva che, avendo i valori di M maggiori rispetto all’esercitazione precedente, anche l’eccentricità è maggiore. A seguito di questa verifica, in base al tipo di eccentricità ottenuta, sono state calcolate le nuove sezioni e sostituite nel modello.