Esercitazione 1

Gruppo di lavoro: Giordana Panella, Quagliani Ilaria

1. Disegno di una trave reticolare tridimensionale

Abbiamo disegnato la trave reticolare tridimensionale su Autocad con un modulo di 3x3x4 metri. Sul lato più lungo si ripete per 14 volte e sul lato più corto per 4 volte.

L'edificio si sviluppa su 5 piani che appoggiano su due setti. I solai sono appesi tramite 20 pilastri.

2. Analisi dei carichi

Una volta ipotizzata la composizione dei solai è stata calcolata la distribuzione di carico ultimo: qu=  γs qs + γp qp + γa qa

qs 

Lamiera grecata: 0,105 KN/mq

Soletta in cls armato: 2,5 KN/mq

Travetti Ipe 270: 0,361 KN/mq

Travi scatolari 50x30: 0,25 KN/mq

qp

Pavimentazione: 0,19 KN/mq

Massetto: 0,38 KN/mq

Controsoffitto: 0,35 KN/mq

Impianti: 0,5 KN/mq

Tramezzi:1 KN/mq

qa

Destinazione d'uso uffici: 3 KN/mq

qu: 12,31 KN/mq

Aree di influenza:

A1,A4,F4,F1= 4,5 mq

A2,A3,F2,F3= 13,5 mq

B1,C1,D1,C4,D4,E4 = 9 mq

B2,C2,D2,C3,D3,E3 = 27 mq

Setti = 108 mq

In seguito sono state moltiplicate le aree di influenza per il numero dei piani e qu. 

3. Progetto della reticolare su SAP 2000

Una volta importato il file .dxf e definito il materiale (acciaio S355), una sezione forfettaria e i vincoli esterni e  interni. 

I carichi sono stati applicati in corrispondenza dei pilastri appesi e dei setti.

Dopo di che è stata avviata l'analisi dei carichi, che ci ha permesso di visualizzare la deformata a SLU. Poichè la trave reticolare non deve essere soggetta a momento è stato verificato che l'unico sforzo presente all'interno delle aste fosse quello assiale.

4. Dimensionamento delle aste 

A seguire sono state estrapolate le tabelle excel con i valori delle sollecitazioni che abbiamo diviso in compressione e in trazione. Le aste soggette a compressione sono state a loro volta suddivise in base alla lunghezza di inflessione e successivamente in range di 900 KN. Lo stesso ragionamento è stato fatto per le aste tese solo che sono state divise in un range di 400 KN. 

 

I profili scelti sono stati poi importati su SAP.

5. Verifica di deformabilità 

Per controllare gli spostamenti verticali è stato necessario realizzare la combinazione dei carichi PP = 1073,92 KN (peso proprio della trave reticolare) e qe= 8,64 KN/mq (distribuzione di carico di esercizio), che è stato sempre moltiplicato per le aree di influenza e per i piani dell'edificio.

Da questa analisi è stato riscontrato che l'abbassamento massimo contenuto all'interno della struttura è di 0,039 m; poichè la luce tra le due cerniere è pari a 24 m dalla formula L/200 la struttura risulta verificata.

 

 

 

Esercitazione 1_Trave Reticolare

Il caso di studio analizzato in questa esercitazione è costituito da una travatura reticolare di 42 x 21 m, poggiata su due setti ad L, alla quale sono appesi i 4 piani che compongono l'edificio.

La trave reticolare è costituita da moduli cubici di 3x3x3 m.

Tutti i passaggi su come questa travatura è stata realizzata tramite SAP2000 sono riportati nel pdf allegato.

 

1_Analisi dei carichi:

Dato il carico qSLU = 14 KN/m2, moltiplicandolo per l’area di influenza del nodo e per il numero di piani del nostro edificio, stimiamo che sui nodi centrali agirà una forza pari a 500 KN, su quelli laterali sarà circa la metà, 250 KN, e sugli spigoli 125 KN.

Applichiamo i carichi al modello di SAP.

A questo punto possiamo lanciare l’analisi e verificare che il momento e il taglio sulle aste sia nullo. L'unico contributo che avremo sarà lo sforzo assiale:

2_Dimensionamento:

Una volta effettuata l’analisi possiamo esportare la tabella “Element forces – frames” su Excel. I dati ottenuti dovranno essere filtrati in modo da eliminare le informazioni superflue.

La tabella verrà poi ordinata in due grandi gruppi per le aste in trazione e quelle in compressione.

Per ogni gruppo vengono individuate 4 categorie a seconda dello sforzo normale (circa ogni 200 KN), in modo da ottenere 8 valori (4 per la compressione e 4 per la trazione) per dimensionare le aste.

Procediamo con i calcoli, dai quali otterremo l’area minima (+ l’inerzia minima nel caso delle aste compresse) con la quale possiamo andare a scegliere da sagomario la sezione con area maggiore a quella trovata.

Compressione:

Trazione:

 

 

 

Per verificare la scelta dei profili dobbiamo andare a cambiare sul modello in SAP la sezione assegnata inizialmente in modo arbitrario con quella dei profili scelti e riavviare di nuovo l’analisi aggiungendo al carico già definito (QSLU) anche il peso proprio (PP).

3_Verifica di abbassamento:

Infine effettuiamo la verifica di abbassamento.

In questo caso la combinazione da utilizzare per la definizione del carico sarà:

qSLE = (1 x 2.43 + 0.7 x 4.16 + 0.7 x 3) KN/m2 = 7.4 KN/m2

Come prima andiamo a definire le forze che agiscono sui nodi caricati (moltiplicando il qsle per il numero dei piani e l’area di influenza del nodo interessato), ottenendo dunque: 266.4 KN per i nodi centrali, 133.2 KN per i nodi perimetrali e 66.6 KN per quelli angolari.

Una volta assegnati tali valori al modello di SAP, andiamo a creare una nuova combinazione (PP + QSLE) e facciamo partire nuovamente l’analisi.

Dobbiamo verificare che l’abbassamento del nodo che ha subito lo spostamento massimo sia inferiore a L/200.

Nel mio caso L= 27 m, quindi 27/200 = 0.135 m. La verifica è quindi soddisfatta.

1 Esercitazione _ Trave reticolare

 

 

In questa esercitazione ho ipotizzato un edificio formato da una struttura reticolare che, tramite dei tiranti, regge 3 solai appesi ì i quali costituiscono i 3 piani della costruzione. La trave reticolare si appoggia su due setti in calcestruzzo armato con 6 pilastri posti tra loro.

La struttura reticolare è composta da moduli a forma di cubo di lato 3*3*3 m, per una dimensione totale di 12*36 m.

 

1_Analisi dei carichi

Innanzitutto, analizzo il solaio tipo, evidenziando i pesi propri dei materiali ed il loro spessore, per poter trovare il carico distribuito per unità di metro quadrato. Devo trovare i carichi G1 (peso propio strutturale), G2 (pesi permanenti portati) e Q (carichi accidentali in base aal destinazione d'uso, tabellati dalla normativa).

Per il carico Q. Destinazione d'uso: uffici. 

Q = 2,00 KN/m2

 

2_Combinazioni dei carichi

Facendo le combinazioni dei carichi allo SLU e allo SLE ottengo

GSLU= 10,31 KN/m2

GSLe= 5,56 KN/m2

Ora devo trovare le aree di influenza delle componenti verticali della struttura.

Ho considerato pilastri i nodi dove i setti coincidono con i nodi della struttura reticolare, mentre i punti neri sono i tiranti che ho posiozionato.

Per trovare i carichi puntuali dovrò fare il seguente calcolo:

F=AInf*GSLU*nPiani

 

3_ Modello 3D

Ora importo il modello Dxf da AutoCAD su SAP2000.

Una volta definito il modello trimidensionale, assegno alle aste la sezione tubolare cava, il materiale (Acciaio S355), rilascio tutte le cerniere affinchè non trasmettano il momento ai nodi. 

Inserisco i carichi puntuali gravanti sui nodi ed i vincoli nei punti dove sono presenti le componenti verticali.


 

4_Dimensionamento Aste

Per trovare gli sforzi presenti nelle aste devo usare il comando di analisi, ignorando la parte DEAD del peso proprio delle strutture e considerando i carichi esterni F.

Una volta inseriti tutti i dati, posso trovare ed estrapolare una cartella Excel con tutte le tensioni di sforzo assiale presenti nelle singole aste. Quindi le ordinerò e prenderò in esame quelle che mi servono Da qui, dividerò le aste in gruppi di sezioni in modo da ottimizzare l'impiego di profili che andrò a prendere dal sagomario.

La formula per il dimensionamento da usare è la sueguente:

A = N/ fyd       

Una volta trovata l'area minima, prenderò dal sagomario una sezione di area superiore al mio risultato.

 

 

5_Asseganzione di una sezione media

Per ottimizzare la costruzione deela travatura, assegno una sezione media per tutte le aste, che sarà una tubolare cava 11,4*3,6 mm.

 

6_Verifica degli spostamenti

Per la verificaallo SLE, devo assegnare il peso proprio della struttura, dopodichè rifarò l'analisi con SAP2000, considerando in più il carico DEAD, per identificare gli spostamenti in basso dovuti ai carichi. 

Lo spostamento verticale non deve superare il rapporto che ha come parametro la luce maggiore tra un appoggio ed un altro.

Lmax = 6m

Umax < L/200

L/200 = 6000/200 = 30 mm

Dalla tabella trovo il caso più grave, dove U è approssimato a 20 mm.

Umax = 20 mm < L/200 = 30 mm      VERIFICATO!

Esercitazione I - Trave reticolare 

Esercitazione I - Trave reticolare 


30 ottobre 2020

Studenti: Dario Stronati _ Lorenzo Vaccari

Il nostro progetto parte dalla concezione di una travatura reticolare con modulo 3x3x3. La pianta a forma rettangolare ha una base di 30mt e una altezza di 12mt. Sono presenti due setti a forma di C simmetrici e specchiati. Il soggetto analizzato si sviluppa su tre piani.

La seconda fase comporta l’importazione del documento .dxf da AutoCAD a SAP2000. 

Analisi dei carichi

4_Procediamo con il calcolo delle aree d’influenza;

5_Prendiamo un pacchetto solaio standard così composto:  

6_Definito il carico ottenuto dalla combinazione dei singoli carichi otteniamo un valore Stato Limite Ultimo pari a 10.10kN/mq; 

7_Con tutti i dati a nostra disposizione possiamo procedere con l’inserire i carichi tramite SAP.

8_Assegnamo i vincoli esterni nei punti prescelti;

9_Ora che tutte le fasi di progettazione sono state portate a termine si può far partire l’analisi;

10_Esportiamo le cartelle utili per il dimensionamento delle aste;

11_Dividiamo le aste sottoposte a trazione e compressione in macro gruppi;

12_Per individuare la sezione da assegnare alle aste della reticolare abbiamo impostato il comando "media" basandoci sul dato area minima di sezione delle aste precedentemente scelte;

 

 

 

 

 

 

 

13_Procediamo con l'assegnazione della nuova sezione a tutte le aste;

 

14_Rilanciamo l’analisi tenendo conto del PesoProprio della struttura utile per verificare abbassamento entro i limiti stabiliti: Umax<L/200

 

 

 

15_Grazie ai dati estrapolati vediamo come la condizione viene soddisfatta. Nel nodo 106 abbiamo un’abbassamento di 6,7mm.

 

Esercitazione 1 - Luca Santilli

Disegno la pianta tipo del mio caso di progetto su AutoCAD tramite un modulo 2,5x2,5x2,5 che si ripete 4 volte lungo l’asse x e 12 lungo l’asse y, ottenendo così una travatura reticolare 10mx30mx2,5m:

  • Asse X: 10m
  • Asse Y: 30m
  • Asse z: 2,5m

 

Per quanto riguarda la distribuzione dimensiono Carico limite ultimo e Carico limite d’esercizio:

  • Carico Limite Ultimo qu = γs*qs + γp*qp * γa*pa   dove γs = 1,3  γp = 1,5  γa = 1,5
  • Carico Limite d’Esercizio qE = Ys*qs + Yp*qp + Ya*qa   dove Ys,Yp,Ya = 1

Quindi:

qu = 10,1 KN/m ²  ,  qE = 5,5 KN/m ²

A questo punto calcolo le Aree di influenza nodali.

Ho 3 tipi diversi di pilastri:

  • A: Ai = 21,875 mq
  • B: Ai = 6,25 mq
  • C: Ai = 3,125 mq

 

Per determinare il carico sui nodi si moltiplica qu con Ai con Np (numero piani, 3):

FA = 662,8 KN  ,  FB = 189,3 KN  ,  FC = 94,6 KN

Apro SAP2000

Assegnati vincoli, carichi, rilasci e sezione il modello è completo e si può procedere all’analisi. 

Ora verifico che il momento e il taglio siano nulli, per avere soddisfatta la condizione della travatura reticolare ed avere solamente sforzo normale

Procedo all’esportazione della tabella dei risultati su Excel.

La risultante tabella su Excel deve essere ordinata e ridotta alle informazioni sullo sforzo assiale, i cui valori ottenuti si dividono in negativi per quanto riguarda le aste compresse e positivi per quanto riguarda le aste tese.

Seleziono 4 aste tese e 4 aste compresse.

Per quanto riguarda le aste tese serve la verifica di resistenza. Si trova l’area minima e si crea la relativa tabella Excel. Confronto i dati con quelli del profilario “Oppo” e seleziono delle sezioni adatte.

Per quanto riguarda invece le aste in compressione si necessita di verifica di resistenza e di instabilità euleriana. Creo la relativa tabella Excel.

A questo punto devo tornare su SAP assegnando un caso ai frame di un profilato medio scelto tra quelli analizzati, tesi e compressi. Stavolta, però, l’obiettivo è quello di ricavare il peso proprio della struttura. Quindi il Pattern da scegliere è DEAD. Ora conosco le reazioni vincolari e il peso della struttura.

PP = 936,077 KN

Con il peso proprio della struttura si può ricavare come esso si distribuisce sui nodi, con una costante β. Quindi:

β = Peso Proprio : Area Piano    >    936,077:300 = 3,12 KN/m²

Ora definisco un carico che rappresenti allo stesso tempo il peso proprio della struttura e quello da me assegnato. Con una ulteriore analisi su SAP ricavo una tabella Excel che mi dia il necessario per la

VERIFICA AGLI ABBASSAMENTI

| v1 |  ≤ 1/200 luce