SdC(b) (LM PA)

Progettazione Strutturale B (LM PA)

ES1 Tessitore Chiara - Travatura reticolare spaziale

La travatura è stata impostata a partire da un modulo quadrato 4x4m con altezza di 4m, per realizzare una struttura di 12x32m. Il carico scelto è q=10kN/mq.

In allegato il file pdf con il procedimento illustrato.

ESERCITAZIONE_1 Dimensionamento e verifica di una travatura reticolare spaziale Vincenzo Sabatino

L'esercitazione consiste nel progettare e verificare una travatura reticolare spaziale tramite l'intervento del programma SAP2000.

- Ipotizzo come modello una travatura reticolare spaziale che ha modulo 4x4x4 metri.

    

 

 

 

 

 

 

 

- Prima di disegnare la travatura reticolare completa vado a definire un nuovo materiale: [Define - Material - Add new material]

- Scelgo un acciaio S275

- Una volta definitivo il materiale passo alle sezioni : [Define - Section Properties - Import New Property - Pipe - Euro.pro]

ASTE VERTICALI E ORIZZONTALI: Pipe, S275, TUBO-D219.1X5

ASTE DIAGONALI: Pipe, S275, TUBO-D244.5X5.4

- Disegno le aste con le sezioni scelte: [Draw - Draw Frame/Cable/Tendon]

- Vado a replicare il modulo in modo da avere una struttura 32x16 m: [Replicate: Ctrl+R]

- Impongo che tutti i nodi interni siano nodi cerniera: [ Selezioni il modello - Assign - Frame - Realease/Partial Fixity] dove Momento = 0

- Inserisco gli appoggi in pochi punti considerando che la travatura reticolare mi consente, con pochi appoggi, di avere luci molto generose: [ Assign - Joint - Restraints - Pinned ]

- Una volta che il modello è completo con tutti gli elementi vado all'analisi dei carichi considerando di avere 3 piani.

Q(tot) = 10 KN/mq x 512 mq =  5120 KN

5120 KN x 3 PIANI = 15360 KN

NODI CENTRALI: 21

NODI PERIMETRIALI: 20

NODI DI SPIGOLO: 4

21F + 20F/2 + 4F/4 = 32F 

15360KN/32 = 480 KN

NC = 480 KN        NP = 240 KN        NS = 120 KN

- Prima di assegnare le forze al modello definisco un pattern in cui per il momento trascuro il peso prorprio della struttura: [Define - Load Patterns]

- Assegno le forze ai rispettivi nodi nel modello: [Assign - Joint Loads - Forces]

- Faccio partire la prima analisi dove abbiamo modo di visualizzare la deformata della struttura e gli sforzi normali delle singole aste

- Esporto la tabella relativa ai carichi delle aste: [Ctrl + T - Analysis Results - Element Output - Frame Output - Element Forces Frame] 

- Esporto il tutto su Excel

- "Ripulisco" la tabella da eventuali dati che non servono ai fini del calcolo, riordino secondo i carichi crescenti per poi dividere in vari gruppi i Frame per definire i profili più adatti ad assorbire gli sforzi normali.

- Procedo col dimensionamento, tramite la tabella excel fornitaci.

- Una volta dimensionate tutte le sezioni (trovate nel sagomario) le importo in SAP definendone il diametro e lo spessore: [Define - Section Properties - Frame Sections - Add New Property]

- Mi assicuro di assegnare alle sezioni lo stesso nome che ho inserito precedentemente nella tabella excel.

- Esporto da SAP la tabella "Frame Section Assignments" : [Ctrl + T - Frame Assignments - Frame Section Assignments] in questa tabella verranno inserite le sezioni precedentemente divise in gruppi nell'altra tabella excel, una volta fatto ciò importo all'interno del software quest'ultima tabella e le sezioni scelte per una prima analisi verranno sostituite, in automatico, con quelle scelte dal sagomario.

- Faccio partire un ulteriore analisi considerando, in questo caso, solo il peso proprio della struttura.

- Esporto la tabella "Joint Reaction" per ottenere la somma F3 ovvero del solo peso proprio.

- Rifaccio l'analisi dei carichi aggiungendo in questo caso F3 = 306,011 KN

15360 KN + 306,011 KN = 15666,011 KN

15666,011 KN = 21F

15666,011 KN/32 F = 489,56 KN

NC = 489,56 KN        NP = 244,78 KN        NS = 122,39KN

- Applico nuovamente i carichi ed eseguo l'ultima analisi

- Estrapolo la tabella "Element forces frame" per verificare se le sezioni scelte in precedenza siano idonee con i nuovi carichi aggiunti dal peso prorpio della struttura.

- Nel caso in cui non sono compatibili si ritorna al dimensionamento delle sezioni, nel caso in cui esse siano compatibili anche con i nuovi carichi la verifica è soddisfatta.

 

 

 

 

 

 

 

ES1 - Dimensionamento di una trave reticolare spaziale - Davide Passeri, Davide Scacco

Il progetto intende analizzare un edificio appeso i cui piani, in totale 5, vengono sostenuti da strutture a travi reticolari. Esse poggiano su 4 vincoli a cerniera posti internamente e sostengono un pacchetto composto da: solaio in laterocemento, pavimentazione con allettamento e massetto. I moduli hanno dimensione 2.5x2.5x2.5 mc per un totale di area di 25x20 mq. L'esercitazione si incentra sul dimensionamento e sui processi di verifica da applicare a partire dalla progettazione fino all'analisi su SAP2000 e fogli Excel. In allegato il pdf contenente lo svolgimento dell'esercitazione

Es.1 Moi Giacomo, dimensionamento di una travatura reticolare spaziale

La prima esercitazione è incentrata sulla progettazione di una travatura reticolare spaziale.

Nel mio caso ho ipotizzato una copertura reticolare di dimensioni 28mx16mx4m alla quale sono appesi 3 solai a distanza 4m l’uno dall’altro.

Apro il nuovo modello di SAP2000 e imposto subito le grandezze in “KN,m,C”, poi vado su “Grid only” e imposto il mio modulo 4mx4m con le seguenti caratteristiche.

Ora imposto il materiale con il quale voglio realizzare le mie aste diagonali, verticali e orizzontali. Define => Materials  => Add new materials e aggiungo un acciaio S275.

A questo punto definisco le sezioni scegliendo una tubolare in acciaio diversa per le aste diagonali (TUBO-D244.5X5.4) e per quelle orizzontali e verticali (TUBO-D298.5X5.9).

In seguito comincio a disegnare i frame sul modello differenziando prima i colori in base alle due differenti sezioni.

A questo punto replico il modello andando a creare la mia travatura reticolare.

Adesso seleziono tutto il modello e impongo che i vincoli siano cerniere ed in seguito assegno i vincoli agli appoggi che mi interessano. (Essendomi accorto di averne distribuiti troppi e con un passa troppo stretto li ho eliminati e riassegnati prima di aver inviato l’analisi dei carichi).

Adesso è necessario definire i carichi andando a ipotizzare la composizione, e quindi il peso, dei solai sottostanti.

Ipotizziamo che i solai siano tutti uguali e di superfice pari a quella della travatura (28mx16m). Una volta definito il pacchetto del solaio ci andiamo a calcolare il peso del solaio al metro quadro.

Dividiamo i carichi in

Qs (carico permanente strutturale):

  • Solaio tipo predalles 3,65 KN/m2

Qp (carico permanente non strutturale):

  • Pavimentazione in pietra artificiale 0,6 KN/m2
  • Malta di allettamento 0,36 KN/m2
  • Massetto in Cls alleggerito 0,91 KN/m2
  • Materassino coibente 0,027 KN/m2
  • Muri interni 1 KN/m2
  • Impianti 0,5 KN/m2

Qa (carico variabile):

  • Destinazione d’uso – civile, abitazione 2KN/m2

Ora possiamo calcolare i carichi allo SLU:

Qslu= Qs(1,3)+Qp(1,5)+Qa(1,5)= (3,65)(1,3)+(0,6+0,36+0,91+0,027+1+0,5)(1,5)+(2)(1,5)=12,84 KN/m2

Di conseguenza la forza totale sarà data da Ftot= Qslu x A x n piani= 12,84KN/m2 x 448m2 x 3= 17.257 KN

 

A questo punto possiamo calcolare quali sono le forze che agiscono su ogni nodo, per fare questo ci calcoliamo il numero di nodi centrali (che avranno una forza che agisce su di essi pari a F), di nodi perimetrali (che avranno una forza che agisce su di essi pari a F/2) e di nodi d’angolo (che avranno una forza che agisce su di essi pari a F/4). Abbiamo quindi 18 nodi centrali, 18 perimetrali, 4 d’angolo.

Quindi: Ftot = 18F + 18F/2 + 4F/4 => 17.257KN = 28F => F= 616,32 KN

Quindi:

  • ai nodi centrali avrò F1= 616,32 KN
  • ai nodi perimetrali avrò F2= 308,16 KN
  • ai nodi d’angolo avrò F3= 154,08 KN

Ora posso assegnare sul modello i carichi ai nodi, definisco una forza su “Define”=> “Load patterns” e metto il valore 0 al peso proprio, a questo punto assegno le forze con “Assign”=> “Joint Loads”=> “Forces”. Per vedere le forze assiali vado su “Display”=> “Show forces”=> “Frame” e seleziono le “axial forces”.

A questo punto con “Ctrl-T” estraggo le tabelle relative solo alla forza F e le esporto su Excel. Fatto questo ordino i valori di P in ordine crescente e li suddivido in gruppi per valori che variano di circa 500KN.

Ora posso inserire i valori massimi di ogni gruppo all’interno del file Excel che mi dirà le caratteristiche minime di ogni sezione (divise per trazione e compressione),stando attenti a impostare la resistenza corretta dell’acciaio che usiamo (S275).

A questo punto sono in grado di scegliere dal sagomario (in base ai valori i A min, rho min e I min) le tubolari circolari che posso utilizzare per la mia struttura, riportandole quindi sul foglio di calcolo Excel.

Da Sap2000 esporto la tabella Frame Section Assigment “Display=> “Show tables”=> “Model definition”=> “Frame assigment” e mi esporto la nuova tabella su Excel. A questo punto sostituisco alle colonne “AutoSelect” e “Analselect” le tubolari che voglio utilizzare per ogni frame.

Adesso importo il file di Excel modificato e lo applico alla mia strutturo in modo da visualizzare i frame disposti correttamente al suo interno.

 Ora posso inserire il peso proprio della struttura, per farlo faccio partire l’analisi utilizzando solo la forza DEAD e mi esporto la tabella dei risultati su Excel per andare poi a sommare tutti i valori di F3, in modo da poterli aggiungere alla F dovuta al peso dei solai trovata in precedenza per poi ridistribuire equamente i nuovi carichi sulla struttura.

Fdead= 363KN

Fsolai= 17.257 KN

Ftot= Fdead + Fsolai = 17.620 KN

Ftot= 18F + 18F/2 + 4F/4 => 17.620KN = 28F => F= 629,29 KN

Ora vado a ridistribuire nuovamente i carichi sui nodi come fatto in precedenza, quindi:

  • ai nodi centrali avrò F1= 629,29 KN
  • ai nodi perimetrali avrò F2= 314,65 KN
  • ai nodi d’angolo avrò F3= 157,32 KN

Ora rimando nuovamente l’analisi su Sap che terrà conto sia del peso proprio che del peso dei solai e vado a verificare che i valori di deformazione massima della struttura siano inferiori a 1/200 della luce. Nel mio caso ottengo valori tutti inferiori, pertanto la struttura è verificata. Qualora questo non fosse accaduto, avrei dovuto riscaricare le tabelle relative agli sforzi assiali e ridimensionare tutte le travi.

ES_1 Dimensionamento e verifica di una travatura reticolare spaziale Grazia Maria Visone

Si ipotizzi una struttura con travatura reticolare spaziale di modulo 4x4x4 metri, ripetuto 6 volte sul lato lungo e 4 sul lato corto, per una superficie totale di 24x16 m, cioè 384 metri quadrati, che si sviluppa su tre piani.

Per dimensionare e verificare la struttura utilizzo il software sap2000, definendo materiale e profili di acciaio.

- Imposto sul software una griglia per creare un cubo 4x4x4 m.

- Definizione materiale e profili - Definisco il materiale [define/material] e scelgo un acciaio S275  e definisco i profili da utilizzare per disegnare la travatura [define/section properties/frame sections] – TUBO-D244.5X5.4 per le travi ortogonali e TUBO-D323.9X5.9 per le aste diagonali.

- Definizione della struttura - Disegno le aste con le sezioni scelte [draw frame].

- Replico il modulo base per realizzare una struttura di superficie 24x16 metri quadrati.

 

 

 

 

 

 

 

- Inserisco le cerniere di appoggio in alcuni punti considerando che la travatura reticolare consente, con pochi appoggi di raggiungere luci piuttosto grandi [assign/joint/restraints] e faccio in modo che siano presenti a livello dei nodi delle cerniere interne, altrimenti il software li considererebbe nodi rigidi (= impongo momento zero) [assign/frame/releases - parxial fixity].

     

- Analisi dei carichi - Calcolo i carichi che saranno applicati su ogni nodo considerando un carico di 10 KN/mq su una superficie di 24x16 mq che si sviluppa su 3 piani.

Qtot = 10 KN/mq x 384 mq x 3 piani = 11520 KN

Nc = nodi centrali = 15

Np = nodi perimetrali = 16 

Ns = nodi agli spigoli = 4

11520 KN = 15F + 16 F/2 + 4F/4 = 24F  -->  F = 480 KN

Nc = 480 KN      Np =  240 KN      Ns = 120 KN

- Assegno tali forze ai diversi nodi della struttura [assign/joint loads/forces]

- Analisi strutturale n.1 -  Procedo con una prima analisi [run now] solo dei carichi F, inseriti sui nodi, non considerando il preso proprio (DEAD) della struttura. 

Il risultato sarà la deformata della struttura e i relativi sforzi normali su ogni asta.

   

- Esporto la tabella relativa ai carichi delle aste [frame output] su Excel, cancello le colonne di momenti e taglio (che risulteranno zero se si considera solo il carico F) e li ordino secondo carichi crescenti, per poi dividerli prima in due grandi gruppi, (aste tese e aste compresse), e poi in sottogruppi per definire i profili più adatti ad assorbire gli sforzi e procedo con il dimensionamento.

- Dal dimensionamento trovo dei profili tubolari cavi nel sagomario: 88.9x3.6 – 168.3x4 – 219.1x5.9 – 168.3x4

- Definisco tali nuove sezioni sul software inserendo il diametro e lo spessore dei profili scelti dal sagomario [define/section properties/frame sections/add new section] e importo la tabella "Frame Assignments" con i nuovi profili per modificare le aste su sap2000.

- Analisi strutturale DEAD - Procedo con una seconda analisi considerando il peso proprio della struttura (dead) [run now/select load/dead] e leggo la deformata e gli sforzi (ci saranno anche i momenti).

- Esporto la tabella Joint Reaction per ottenere la somma delle F3 dei carichi ai nodi del solo peso proprio.

     F3 = 113,542 KN

- Analisi dei carichi n.2 - Calcolo i carichi applicati ai nodi sommando F3 a Q1tot.

F3 = 113,542 KN                      Q1tot = 11520 KN 

Q tot = 11520 KN + 113,542 KN = 11633,542 KN     

11633,542 KN = 15F + 16 F/2 + 4F/4 = 24F             --> F= 484,7 KN

Nc = 484,7 KN      Np = 242,36 KN       Ns = 121,18 KN

- Applico nuovamente i carichi sui nodi.

- Analisi strutturale n.2 - Faccio partire una nuova analisi [run now] di F ed esporto la tabella Frame Output per verificare se le sezioni precedentemente scelte siano compatibili con i nuovi carichi aggiunti dal peso proprio della struttura. 

- Dimensiono nuovamente i profili e scelgo dei tubolari cavi: 139,7x2,9 -  219,1x4 - 271x5,6 – 168,3x4.

- Ridefinisco i profili su sap e importo la tabella per modificare le sezioni che si sono modificate nei calcoli. 

La verifica è effettuata nel momento in cui analizzando la struttura e dimensionando nuovamente i profili, essi risulteranno gli stessi dell'analisi precedente. 

 

 

 

 

 

 

 

 

 

ES.1 - Dimensionamento di una travatura reticolare spaziale - Scavello

  • Creo una griglia sul software SAP2000 considerando un modulo 3x3x3m (File -> New -> Grid only)

  • Definisco il materiale, ovvero acciaio S275, andando su Define -> Materials -> Add new material -> Italy -> Steel -> NTC2008

  • Definisco due sezioni andando su “Define -> Section propierties -> Frame sections” ovvero TUBO-D244.5X5.4TUBO-D355.6X6.3
  • Clicco su “Draw frame” e, facendo attenzione a modificare la sezione per le diagonali, disegno il mio modulo
  •  Vado su “Set display options” per visualizzare con colori diversi le differenti sezioni e verificare che siano state disegnate correttamente

  • Per ottenere la travatura reticolare spaziale, copio il modulo su “Edit -> Replicate” e poI “Edit -> Mirror

  • Per posizionare i vincoli seleziono “View -> View 2D” e mi posiziono a z =0

  • Seleziono quindi i punti dove posizionare i vincoli esterni e procedo con “Assign -> Joint -> Restrints

  • Mi posiziono in Vista 3D e vado su “Assign -> Frame -> Releases” per annullare il momento all’inizio e alla fine dei Frame in quanto SAP altrimenti considererebbe i nodi come nodi rigidi.
  • Procedo quindi con il calcolo dell’area della pianta.

A= 24 x 21 = 504 mq

n piani = 3

Qpiano= 10 kN

 

Atot = 1512 mq

Qtot = 15120 kN

  • Dovendo distribuire il carico nei nodi e sapendo che il carico si distribuisce nei nodi laterali e angolari in maniera diversa ripetto a quelli interni alla maglia, trovo il numero dei vari nodi

Na = 4

Nl = 26

Nc = 42

quindi calcolo la forza agente

Fa = F/4 = 69 kN

Fl = F/2 = 137,5 kN

Fc = 275 kN

  • Torno su SAP e vado su “Define -> Load Patterns” e definisco il carico F ponendo “Self Weight” pari a 0.
  • Mi metto in posizione 2D con z = 3 quindi procedo con l’assegnazione dei carichi nei nodi in base ai valori trovati

  • Procedo con l’analisi della struttura

                    

                             Deformata                                                   Sforzi assiali

  • A questo punto esporto la tabella relativa alle aste considerando solo le forze F agente

  • Su Excel elimino i dati superflui che SAP genera automaticamente e ordino la tabella in base allo sforzo normale. Raggruppo le aste in macrocategorie in modo tale da ottenere dei gruppi di aste sottoposte a sforzo simile. Ottengo quindi in questo modo 5 gruppi di aste sottoposte a trazione e 7 sottoposte a compressione
  • Procedo con il dimensionamento delle aste avendo scelto una sezione circolare cava facendo una distinzione tra:
  1. aste sottoposte a una forza normale di trazione, dove mi avvalgo dell’Amin per assegnare all’asta un profilo scelto dal profilario che abbia A > Amin
  2. aste sottoposte ad una forza normale di compressione, dove terrò conto anche dell’instabilità e della snellezza

 

 

 

Aste sottoposte a trazione

 

Aste sottoposte a compressione

  • Torno su SAP ed esporto la tabella “Frame section assigment” su Excel in modo tale da modificare le sezioni con quelle trovate.

  • Torno su SAP e vado su “Define -> Sections Properties -> Frame Properties -> Add” e modifico i dati in base ai valori trovati e a come ho nominato su Excel le varie sezioni.
  • Importo la seconda tabella di Excel e visualizzo il modello in base alle sezioni

  • Procedo nuovamente con l’analisi per F

                      

                             Deformata                                                    Sforzi assiali

  • Procedo con l’analisi per DEAD ovvero considerando anche il peso proprio della struttura

                  

                           Deformata                                                   Sforzi assiali

  • Il modello che stiamo considerando è un modello teorico in cui tutti i carichi, anche il peso proprio, sono considerati agenti solo sui nodi cioè come carichi concentrati. Sommo quindi i dati relativi alle reazioni vincolari per ottenere il peso proprio della struttura. Esporto su Excel la tabella relativa alle reazioni dei nodi ( Ctrl +T -> Joint Reaction)

  • Sommo F3 a Qtot prima trovato e ridistribuisco il carico nei nodi ottenendo quindi che:

Q’= Qtot + F3 = 15200,5 KN      [Qtot = 15120 kN; F3=80,5kN]

Na = 4

Nl = 26

Nc = 42

 

Fa = F/4 = 76 kN

Fl = F/2 = 152 kN

Fc = F = 304 Kn

  • Torno su SAP e ridistribuisco i carichi sui nodi come fatto in precedenza

  • Procedo nuovamente con l’analisi

                     

                             Deformata                                                   Sforzi assiali

  • Esporto nuovamente la tabella “Frame output -> Element forces -Frames”, quindi, vado su Excel per ripulire la tabella e raggruppare nuovamente le aste in base agli sforzi.

  • Procedo con il dimensionamento

Aste sottoposte a trazione

 

Aste sottoposte a compressione

  • Confrontando con il predimensionamento noto che solo la sezione 12 non è verificata.
  • Torno su SAP per modificarne i parametri (Define -> Section properties -> Frame sections -> Modify)

  • Procedo nuovamente con l’analisi

                                Deformata

 

                              Sforzi assiali         

             

 

 Conclusioni:

Nonostante la struttura sia verificata, coincidendo i valori trovati con i valori dell'ultima analisi, si denota che nel caso specifico non viene sfruttata al massimo la potenzialità di una struttura reticolare in quanto il numero di vincoli esterni è maggiore di quello effettivamente necessario e le dimensioni totali della maglia sono ridotte rispetto alle luci possibili di una struttura reticolare spaziale. 

ES.1 - Dimensionamento di una travatura reticolare spaziale - F.Manciocchi/P.Visca

A partire dal progetto di una ipotetica struttura a ponte, a doppia altezza e sospesa tra due edifici, abbiamo immaginato la sua realizzazione mediante l'utilizzo si una travatura reticolare spaziale con modulo base un cubo di lato 6m, ripetuto 6 volte in lunghezza (per un totale di 36m) e 2 volte in profondità (per un totale di 12m).

Già dal principio ipotizziamo che le aste compresse andranno dimensionate per inerzia minima a causa dell'elevata snellezza. Ipotizziamo inoltre che il punto in cui si verificherà il massimo abbassamento saranno i nodi centrali, ovvero i più lontani dall'appoggio.

Eseguiamo il dimensionamento disegnando la struttura direttamente sul software SAP2000 su cui successivamente assegneremo carichi e vincoli ed eseguiremo l'analisi della travatura. Segue la procedura completa.

1. Apro SAP2000 e creo una griglia 6mx6mx6m (File->New->Grid only) con Default units KN, m, C;

                      

2. Definisco come materiale l’acciaio S275 (Define->Materials->Add new material->Italy->Steel->NTC2008) e come sezione una tubolare casuale di circa 20cm fino al primo dimensionamento (Define->Section properties->Frame sections->Import new property->Pipe);

                                                     

3. Inizio a modellare la struttura creando il modulo di base quadrato e opportunamente controventato, sfruttando la griglia precedentemente impostata (Draw->Draw frame/cable/tendon), successivamente lo copio/specchio fino ad arrivare alla composizione voluta (Edit->Replicate);

4. Assegno i vincoli dove previsto (Assign->Joint->Restraints);

     

5. Assegno all’inizio e alla fine di ogni asta Momento 0 così che non consideri le aste allineate come continue (Assign->Frame->Releases/partial fixity);

6. Calcolo il carico totale sulla base di F = 15 KN/m^2 (solaio + solaio di copertura) e lo suddivido equamente tra i nodi centrali, quelli di bordo e quelli d’angolo, rispettivamente F, F/2 ed F/4. Successivamente creo il carico concentrato F su SAP deselezionando la spunta che tiene conto del peso della struttura stessa (Define->Load patterns->Add new load pattern) e lo applico ai nodi corrispondenti (Assign->Joint loads->Forces);

Nello specifico Ftot = 15KN/m^2*36m*12m = 6480KN, da cui per 5 nodi centrali, 12 di bordo e 4 d'angolo risulta Ftot = 5F + 12F/2 + 4F/4 = 12F = 6480KN, che ridivisi danno F = 540KN, F/2 = 270KN, F/4 = 135KN

                

7. Avvio l’analisi della forza F (Analyze->Run analysis) e scarico la tabella excel relativa allo sforzo normale lungo le travi (Display->Show tables-> Analysys results->Element output->Frame output), a partire da questa dimensiono le sezioni dei tubolari tenendo conto dell’Area della sezione metallica e del momento d’inerzia per gli elementi compressi;

                           

8. Mediante l’ausilio della tabella excel riguardante la sezione delle aste, scaricata (Display->Show tables->Property definition->Frame section properties) e poi reimportata con le aste dimensionate (File->Import->SAP2000 MS excel spreadsheet .xls file) in SAP, inserisco le nuove sezioni nel modello , mando ora l’analisi sul peso della struttura (Analyze->Run analysis->DEAD) e estraggo la reazione vincolare totale (Display->Show tables->Joint output->Reactions), la aggiungo poi alla forza totale che vado a suddividere di nuovo equamente tra i vincoli;

                      

                     

9. Mando ora l’analisi con la forza F, questa volta comprensiva del peso della struttura e scarico di nuovo la tabella excel con gli sforzi normali che uso per dimensionare di nuovo le aste come precedentemente nel passaggio 7 e le inserisco nel modello come da passaggio 8;

10. Ripeto i passaggi 8 e 9 fin quando non si conferma il dimensionamento immediatamente precedente, a questo punto controllo su SAP che l'abbassamento massimo (U3) non superi 1/200 della distanza tra il punto e l'appoggio più vicino, in caso contrario dovrei procedere con un acciaio più performante o con l'aggiunta/spostamento dei vincoli. Per visualizzare otticamente le diverse travi sul modello uso Set display options->General options->View by colors of sections.

la torsione nelle travi

 

Avrei potuto scrivere una dispensa sulla torsione.

Invece vi ho selezionato contenuti disponibili in rete, di docenti che condividono la stessa filosofia open access di questo portale. Queste due dispense sono abbastanza semplici e soprattutto esaustive, nei limiti dei nostri obiettivi formativi.

In aggiunta, ho inserito due file excel, relativi a due sezioni quadrate cave in parete sottile, l'una di profilo chiuso, l'altra di profilo aperto. Calcolano il momento di inerzia a flessione e a torsione delle due sezioni.
Questa esemplificazione serve a mostrarvi che la presenza della fessura nel profilo ha piccole conseguenze nel caso della flessione e grandi conseguenze nel caso di torsione.

Buon lavoro

la prof.

Pagine

Abbonamento a RSS - SdC(b) (LM PA)