Esercitazione

Esercitazione

DIMENSIONAMENTO DI UNA TRAVATURA RETICOLARE SPAZIALE_Lozonschi_Miloro

• DISEGNO GEOMETRICO 

Imposto la griglia come base per disegnare il modulo della reticolare. Il modulo avrà dimensioni 3x3x3 m e sarà controventato dalle diagonali. La reticolare ha 14 moduli lungo Y e 6 lungo X.

• [ File/ new model / only grid ]

• [ Draw frame ]

Seleziono tutte le diagonali e creo un gruppo ‘‘diagonali’’ per facilitare l’analisi della struttura in diverse parti perché le diagonali avendo una lughezza maggiore e quindi un diverso raggio d’inerzia, andranno dimensionate separatamente.

• [ Define / group / add new group ]

• [ Assign / assign to group ]

Imposto la vista 2D sul piano X-Y con Z=0, seleziono tutta la struttura e inserisco le cerniere interne, interrompendo la continuità del momento tra le aste connesse, le aste reticolari sono elementi strutturali soggetti solo a sforzo assiale. Dal comando release / partial fixity spunto ‘‘start’’ e ‘‘end’’ sul momento in direzione 2-2 e 3-3. Una volta rilasciati i momenti, definisco il materiale dal comando ‘‘define materials’’ scelgo l’acciaio S355 secondo le NTC2008. A questo punto importo un’ipotetica sezione tubolare cavo da sagomario ( D244,5x5,4 mm) e l’assegno a tutte le aste, da modificare successivamente dopo aver effettuato il dimesionamento.

• [ Assign / frame / release-partial fixity ]

• [ Define / section properties / frame section / import new property / steel / pipe ]

• [ Assign / frame / frame section ]

Dal disegno della pianta realizzata su CAD individuo i punti di appoggio della reticolare ai setti. Una volta individuati applico i vincoli esterni mettendomi sulla vista X-Y con Z=0.

• [ Assign / joint / restraints ]

 

• ASSEGNAZIONE DEI CARICHI

L’edificio ipotizzato ha una struttura reticolare spaziale che regge 4 piani sospesi. Ogni piano occupa una superficie di 756 mq (ogni cubo della reticolare ha un’area di 6 mq).

Devo calcolare il carico di stato ultimo qu facendo l’analisi dei carichi del solaio tipo. Scelgo un solaio in acciaio.

• Destinazione d’uso : Uffici qa = 2,00 KN/m2

• qs = qlamiera+ qc.a=2,00 KN/m2

• qp = qgres+ qmassetto+ qisolante+ qimpianti+ qtramezzi+ qcontrosoffitto= 4,57 KN/m2

qu = 2,00 KN/m2x 1,3 +4,57 KN/m2x 1,5+ 2,00 KN/m2x 1,5 = 12,45 KN/m2

Per ogni pilastro viene considerata l’area di influenza, dove per i perimetrali l’area di influenza è la metà e per gli angolari è 1/4 mentre per quelli centrali è massima ovvero 36 mq. L’area di influenza dei restanti pilastri e dei setti la trovo da ‘‘properties’’ selezionando la polilinea. Ogni pilastro è agganciato alla reticolare da tiranti in acciaio che si ancorano ai nodi della reticolare. 

Pn,centrali = n x qu x An,centrali = 4 x 12,45 KN/m2 x 36 m2 = 1792,8 KN
Pn,perimetrali = Pnodi centrali / 2 = 896,4 KN
Pn,angolari = Pnodi perimetrali / 2 = 448,2 KN 
Pn1,setti = (n x qu x An1,setti ) / 4= 1008,45 KN (4 nodi sul setto) 
Pn2,setti = (n x qu x An1,setti ) / 3= 896,4 KN (3 nodi sul setto)
Pn = (n x qu x An1,setti )= 1344,6 KN 

Definisco il carico P trovato da applicare ai nodi come forza concentrata con moltiplicatore di peso proprio pari a 0. A questo punto, dalla vista 2D sul piano X-Y con Z=3, seleziono i nodi superiori della reticolare presenti nella vista.

• [ Define/ load patter / add new load pattern ]

• [ Assign / joint loads / forces ] 

• SOLLECITAZIONI

Una volta applicati i vincoli interni, la sezione, i vincoli esterni e i carichi, posso far partire l’analisi con il comando run analysis e avvio solo il load pattern P (carichi concentrati) non considerando il peso proprio della reticolare. Visualizzo la deformata e i grafici degli sforzi assiali (controllo dal grafico dei momenti che questi siano nulli sulle aste).

• DIMENSIONAMENTO ASTE COMPRESSE E TESE

Per il dimensionamento dei profili esporto le tabelle da SAP selezionando solo il carico P assegnato ai nodi. Prima di esportare in Excel posso modificare le station dal comando ‘‘output station’’ impostando come numero minimo di station il valore 1, in quanto ,se progettata bene, la reticolare avrà sforzi assiali costanti per l’intera lunghezza dell’asta. Esportate le tabelle, è necessario riordinarle ulteriormente:

- Ordino la colonna station in ordine crescente ed elimino ciò che non mi serve.

- Ordino i valori dello sforzo Nd dal più piccolo al più grande in modo da separare le aste compresse da quelle tese.

• [ Ctrl + T / analysis results / frame output ]

• [ Assign / frame / output station ] 

Per semplificare l’assegnazione dei profili dimensionati alle aste posso fare un’approssimazione dividendo in macrogruppi le aste tese e compresse sia per le diagonali D che per le aste O/V scegliendo la sezione più sollecitata. 

• ASSEGNAZIONE PESO PROPRIO DELLA RETICOLARE

Per considerare il peso proprio della reticolare devo assegnare i profili dimensionati alle aste. Considero una media delle sezioni. Definisco la nuova sezione su SAP e l’assegno a tutte le aste. La sezione da assegnare è 323,9 x 5,9 mm.

• [ Define / section properties / frame section / add new property / steel / pipe ]

• [ Assign / frame / frame section ] 

Assegnate le sezioni, avvio l’analisi con il peso proprio DEAD. La struttura è in equilibro statico se la somma delle reazione vincolari verticali (cerniere assegnate) e dei carichi verticali, in questo caso il peso proprio, è nulla. Quindi dal comando ’’joints reactions’’ esporto su Excel le reazioni vincolari e sommando le F3 (asse locale verticale) ottengo il valore del peso proprio.

A questo punto creo un nuovo load pattern Pp con moltiplicatore di peso proprio uguale a 0 e lo aggiungo. Lo devo assegnare ai nodi centrali, perimentrali e angolari in quanto hanno aree di influenza diverse. Imposto la vista X-Y con Z=3 e seleziono i nodi.

n.centrali = 65

n.perimetrali = 36/2 = 18

n.angolari = 1

n.tot = 84

Pn.centrali = Pp / ntot = 1339,942 /84 = 15,95 KN/m2

Pn.perimetrali = Pn,centrali / 2 = 7,97 KN/m2

Pn.angolari = Pn,perimetrali / 2 = 3,98 KN/m2

• COMBINAZIONE DI CARICO Pp - P

Assegnati il peso proprio Pp e il P ai nodi definisco una combinazione di carico per verificare quanto incide il peso proprio sulla struttura.

Mando l’analisi con la combinazione e verifico sulle tabelle esportate nuovamente su Excel se gli sforzi assiali non sono troppo distanti dai valori iniziali. All’incirca l’aumento è del 10 %.

 


Sforzi assiali dalla COMBO1


Sforzi assiali del Carico P

 

 

 

 

 

 

 

 

 

 

 

 

 

• VERIFICA DI DEFORMABILITA’

Devo verificare di quanto si abbassi la reticolare e per essere soddisfatta, l’abbassamento maggiore non deve superare un 1/200 della distanza maggiore tra gli appoggi. Per verificare la deformabilità devo assegnare il carico allo stato limite di esercizio ed esportare gli abbassamenti. Prendo lo spostamento maggiore e verifico che sia minore di L/200, dove L è la distanza massima. Mi creo il carico d’esercizio, lo distribuisco ai nodi in base alla loro area di influenza e mando l’analisi. 

• [ Define/ load patter / add new load pattern ]

• [ Assign / joint loads / forces ]

qe = qs x 1 + qp x 0,7 + qa x 0,7 = 6,6 KN/m2

qe = 2,00 KN/m2 x 1 + 4,57 KN/m2 x 0,7+ 2,00 KN/m2 x 0,7 = 6,60 KN/m2

Dalle tabelle risulta che il valore massimo di abbassamento è di 3,6 cm che soddisfa la verifica di deformabilità in quanto L/200= 23000 cm/200= 11,5 cm.

 

 

 

 

ESERCITAZIONE 1 - TRAVATURA RETICOLARE SPAZIALE - GRUPPO: MICHELENA, SACRISTÁN

inserire immagini senza copia-incolla

PROGETTO DI UNA TRAVATURA RETICOLARE SPAZIALE MEDIANTE L’UTILIZZO DEL SOFTWARE SAP2000.

Introduzione

L’obiettivo di questa esercitazione è quello di studiare una travatura reticolare spaziale e dimensionarne le aste tese e compresse mediante l’utilizzo del programma di calcolo Sap2000, al fine di dimensionare correttamente tutte le parti della struttura mediante la lettura e comprensione dei fogli di calcolo Excel che il programma fornisce dopo l’analisi strutturale.

Riassunto dei passaggi principali :

  1. Disegno in Autocad del piano tipo dell’edificio
  2. Disegno della travatura reticolare in Sap2000
  3. Analisi delle aree di influenza
  4. Analisi dei Carichi allo SLU e SLE
  5. Definizione della Sezione , Assegnazione dei vincoli e dei carichi in Sap2000
  6. Analisi della Struttura
  7. Esportazione Tabelle .xls e valutazione dei risultati con conseguente divisione in macro gruppi
  8. Dimensionamento a Compressione e Trazione delle Aste
  9. Aggiunta del peso proprio della struttura, sostituzione sezioni dimensionate e analisi finale
  10. Verifica ultima della snellezza delle aste (Lambda >200).

1 - Disegno in Autocad del piano tipo dell’edificio

Disegno in Autocad la pianta tipo di un edificio.

Posiziono le gabbie scale e i pilastri che saranno collegati ai nodi della travatura reticolare.

Dimensionamento di una trave reticolare spaziale di un edificio composto da n° 8 piani, i quali sono «appesi» alla travatura reticolare mediante dei tiranti, a sua volta sostenuta da 2 punti di appoggio in cls (gabbia scale).

 

 

 

 

 

 

2- Disegno della travatura reticolare in Sap2000

Come primo passaggio si disegna un cubo controventato per definire un modulo della nostra struttura. (2x2x2m).

Per disegnarlo si imposta una griglia di lavoro per avere dei riferimenti spaziali nel modello di Sap2000 attraverso il comando Define Grid System Data  (grid only – importante il controllo delle unità di misura espresse in Kn,m,C). Si inseriranno quindi nella finestra di dialogo dedicata alla griglia i valori che si vogliono assegnare (2 m per lato).

 

3– Analisi delle Aree di influenza

Torniamo in Autocad per calcolare l’area di influenza di ogni appoggio.

Avremo 3 distinzioni :

  • Nodi centrali
  • Nodi perimetrali
  • Nodi angolari

Divideremo poi il carico che calcoleremo successivamente

Stando attenti ad una proporzione idonea del carico per posizione del nodo, in funzione delle singole aree di influenza .

 

4 – Analisi dei carichi allo SLU e SLE

Scegliamo ora la tipologia di solaio scelto per il nostro edificio .

Solaio leggero in acciaio .

Utilizziamo le formule fornite dalla normativa in materia NTC 2008 che corrispondono a due distribuzioni di carico diverse:

  • SLU : Sicurezza
  • SLE : Confortevolezza

Nelle due formule cambiano quindi i coefficienti moltiplicatori in caso di SLU o SLE.

Dovremo comunque sempre considerare per ognuna delle due questi valori :

  • Qu = carico strutturale
  • Qp = sovraccarico permanente
  • Qa = sovraccarico accidentale 

Nel nostro caso qu = 10,31 kN/m2

5 – Definizione della sezione, Assegnazione dei vincoli e dei carichi in Sap2000

Definiremo ora la sezione delle aste aggiungendo un materiale con il comando Add Materiale>Acciaio S355> seleziono tutte le aste>Assign>Frame>FrameSection>Import New Properties>Sagomario>euro.pro>Pipe>Tubo D244 5x5,4>ok .

Ora si posizionano i vincoli  :

View>Set2d view>piano xy>quota 0>seleziono i nodi interessati>Assign>Joint>Joint Restraints>cerniera>ok

Ora assegno i carichi:

Selezione dei pilastri centrali, perimetrali e angolari e assegneremo ad ogni gruppo di questi il carico corrispondente che abbiamo calcolato precedentemente.

Definisco quindi un LOAD PATTERN chiamato “F”> togliendo il moltiplicatore di peso proprio (no carichi distribuiti).

Assign>JointLoads>Forces>F>Force Global Z> e si inseriscono i valori calcolati precedentemente.

- Nodi angolari: 10.31 kN/mq  x 6mq x 8 (piani) = 494.88 kN

- Nodi centrali: 10.31 kN/mq  x 24mq x 8 (piani) = 1979.52 kN

- Nodi perimetrali: 10.31 kN/mq x 12mq x 8 (piani) = 989.76 kN

- Nodi gabbia scale interni: 10.31 kN/mq  x 16mq x 8 (piani) = 1319.68 kN

Come ultimo passaggio prima di avviare l’analisi si deve fare l’operazione del Rilascio dei Momenti .

Assign>Frame>Release Partial Fixity> moment 22 e moment 33 = 0 (all’inizio e alla fine).

Seleziono quindi tutta la struttura >edit>edit points>Matchjoints>criterio di tolleranza 0,1m >ok.

(questo passaggio si effettua per eliminare le incongruenze geometriche che in alcuni casi si verificano nell’importazione del modello in sap o nella sua costruzione ).

6 – Analisi della Struttura

Analysis>RunAnalysis

Dopo aver avviato l’analisi visualizziamo quindi il diagramma grafico degli sforzi normali agenti sulla struttura tramite il comando Display Frame Forces/Stresses.

7 - Esportazione Tabelle .xls e valutazione dei risultati con conseguente divisione in macro gruppi

Attraverso il comando Assign>Frame>Output Stations si indica a Sap che nell’esportazione delle tabelle excel dovrà considerare solamente i valori all’inizio e alla fine delle aste, per non creare confusione al momento della lettura dei valori.

Con il comando Ctrl+T esportiamo quindi le tabelle.

Analisi delle tabelle di esportazione da Sap2000 : per ordinare i risultati eliminiamo le righe che riportano valori ininfluenti (pari a 0) e dividiamo le aste per gruppi selezionando un range di valori di sforzo normale ragionevolmente ampi, per far sì che la progettazione delle aste tese e compresse sia verosimile a quella che si fa nella realtà .

8 - Dimensionamento a Compressione e Trazione delle Aste

Per dimensionare le aste compresse consideriamo diversi parametri come : l’Area minima Amin, il momento di inerzia Ix, e il raggio giratore di inerzia ρmin.

 (per far si che l’asta sia verificata anche per il fenomeno di instabilità euleriana).  

Con il valore dell’Area minima consulteremo quindi i profilari , in base alla sezione assegnata alle aste in fase di modellazione in Sap2000, scegliendo i valori immediatamente superiori.

Si riportano i valori corrispondenti di Area di design, Inerzia di design e Rho min corrispondenti alla sezione scelta.

Per dimensionare le aste tese consideriamo il valore dello sforzo normale e la resistenza di progetto.

Conoscendo questi due valori possiamo dunque ricavare il valore dell’Area necessaria a contrastare lo sforzo normale, scegliendo i valori immediatamente superiori.

Raggrupperemo infine le aste tese e compresse in macro gruppi aventi tutti le stesse sezioni .

Ai fini dell’ingegnerizzazione delle aste abbiamo pensato di suddividere il numero totale di queste in gruppi (ogni gruppo ha un range di carico piuttosto ampio per far sì che il cantiere sia organizzato per poter assemblare la travatura reticolare ottimizzando le tempistiche e il numero di sezioni da assemblare). 

9 - Aggiunta del peso proprio della struttura

Torniamo in Sap2000 per aggiungere un nuovo LOAD PATTERN che ci aiuterà a considerare anche il peso proprio della struttura.

Modificheremo anche le sezioni dei gruppi di aste, ora calcolate con precisione in funzione dei carichi.

Ripetiamo l’analisi .

10 - Verifica ultima della snellezza delle aste (Lambda >200).

Verificheremo infine che il valore della Lamba λ (snellezza) sia inferiore a 200, come espresso dalla normativa in materia.

Verificheremo inoltre l’abbassamento di ogni punto coonsiderando che lo SLE è inteso mediamente come il 30% in meno dello SLU. Verificato questo ultimo punto quindi diremo che , facendo questa semplice proporzione, l’abbassamento è verificato e rientra nei limiti normativi .

Dopo l’ultima analisi che considera sia il peso proprio della struttura sia le forze, verificheremo quindi lo spostamento massimo dei nodi .

Il nodo che si abbassa di più è il n. 15 con un abbassamento di mm= 1,79 . 

Bisogna ora verificare che questo abbassamento sia Umax<L/200 = 60 mm , è dunque verificata. 

 

Esercitazione 1

Gruppo di lavoro: Giordana Panella, Quagliani Ilaria

1. Disegno di una trave reticolare tridimensionale

Abbiamo disegnato la trave reticolare tridimensionale su Autocad con un modulo di 3x3x4 metri. Sul lato più lungo si ripete per 14 volte e sul lato più corto per 4 volte.

L'edificio si sviluppa su 5 piani che appoggiano su due setti. I solai sono appesi tramite 20 pilastri.

2. Analisi dei carichi

Una volta ipotizzata la composizione dei solai è stata calcolata la distribuzione di carico ultimo: qu=  γs qs + γp qp + γa qa

qs 

Lamiera grecata: 0,105 KN/mq

Soletta in cls armato: 2,5 KN/mq

Travetti Ipe 270: 0,361 KN/mq

Travi scatolari 50x30: 0,25 KN/mq

qp

Pavimentazione: 0,19 KN/mq

Massetto: 0,38 KN/mq

Controsoffitto: 0,35 KN/mq

Impianti: 0,5 KN/mq

Tramezzi:1 KN/mq

qa

Destinazione d'uso uffici: 3 KN/mq

qu: 12,31 KN/mq

Aree di influenza:

A1,A4,F4,F1= 4,5 mq

A2,A3,F2,F3= 13,5 mq

B1,C1,D1,C4,D4,E4 = 9 mq

B2,C2,D2,C3,D3,E3 = 27 mq

Setti = 108 mq

In seguito sono state moltiplicate le aree di influenza per il numero dei piani e qu. 

3. Progetto della reticolare su SAP 2000

Una volta importato il file .dxf e definito il materiale (acciaio S355), una sezione forfettaria e i vincoli esterni e  interni. 

I carichi sono stati applicati in corrispondenza dei pilastri appesi e dei setti.

Dopo di che è stata avviata l'analisi dei carichi, che ci ha permesso di visualizzare la deformata a SLU. Poichè la trave reticolare non deve essere soggetta a momento è stato verificato che l'unico sforzo presente all'interno delle aste fosse quello assiale.

4. Dimensionamento delle aste 

A seguire sono state estrapolate le tabelle excel con i valori delle sollecitazioni che abbiamo diviso in compressione e in trazione. Le aste soggette a compressione sono state a loro volta suddivise in base alla lunghezza di inflessione e successivamente in range di 900 KN. Lo stesso ragionamento è stato fatto per le aste tese solo che sono state divise in un range di 400 KN. 

 

I profili scelti sono stati poi importati su SAP.

5. Verifica di deformabilità 

Per controllare gli spostamenti verticali è stato necessario realizzare la combinazione dei carichi PP = 1073,92 KN (peso proprio della trave reticolare) e qe= 8,64 KN/mq (distribuzione di carico di esercizio), che è stato sempre moltiplicato per le aree di influenza e per i piani dell'edificio.

Da questa analisi è stato riscontrato che l'abbassamento massimo contenuto all'interno della struttura è di 0,039 m; poichè la luce tra le due cerniere è pari a 24 m dalla formula L/200 la struttura risulta verificata.

 

 

 

Esercitazione 1_Trave Reticolare

Il caso di studio analizzato in questa esercitazione è costituito da una travatura reticolare di 42 x 21 m, poggiata su due setti ad L, alla quale sono appesi i 4 piani che compongono l'edificio.

La trave reticolare è costituita da moduli cubici di 3x3x3 m.

Tutti i passaggi su come questa travatura è stata realizzata tramite SAP2000 sono riportati nel pdf allegato.

 

1_Analisi dei carichi:

Dato il carico qSLU = 14 KN/m2, moltiplicandolo per l’area di influenza del nodo e per il numero di piani del nostro edificio, stimiamo che sui nodi centrali agirà una forza pari a 500 KN, su quelli laterali sarà circa la metà, 250 KN, e sugli spigoli 125 KN.

Applichiamo i carichi al modello di SAP.

A questo punto possiamo lanciare l’analisi e verificare che il momento e il taglio sulle aste sia nullo. L'unico contributo che avremo sarà lo sforzo assiale:

2_Dimensionamento:

Una volta effettuata l’analisi possiamo esportare la tabella “Element forces – frames” su Excel. I dati ottenuti dovranno essere filtrati in modo da eliminare le informazioni superflue.

La tabella verrà poi ordinata in due grandi gruppi per le aste in trazione e quelle in compressione.

Per ogni gruppo vengono individuate 4 categorie a seconda dello sforzo normale (circa ogni 200 KN), in modo da ottenere 8 valori (4 per la compressione e 4 per la trazione) per dimensionare le aste.

Procediamo con i calcoli, dai quali otterremo l’area minima (+ l’inerzia minima nel caso delle aste compresse) con la quale possiamo andare a scegliere da sagomario la sezione con area maggiore a quella trovata.

Compressione:

Trazione:

 

 

 

Per verificare la scelta dei profili dobbiamo andare a cambiare sul modello in SAP la sezione assegnata inizialmente in modo arbitrario con quella dei profili scelti e riavviare di nuovo l’analisi aggiungendo al carico già definito (QSLU) anche il peso proprio (PP).

3_Verifica di abbassamento:

Infine effettuiamo la verifica di abbassamento.

In questo caso la combinazione da utilizzare per la definizione del carico sarà:

qSLE = (1 x 2.43 + 0.7 x 4.16 + 0.7 x 3) KN/m2 = 7.4 KN/m2

Come prima andiamo a definire le forze che agiscono sui nodi caricati (moltiplicando il qsle per il numero dei piani e l’area di influenza del nodo interessato), ottenendo dunque: 266.4 KN per i nodi centrali, 133.2 KN per i nodi perimetrali e 66.6 KN per quelli angolari.

Una volta assegnati tali valori al modello di SAP, andiamo a creare una nuova combinazione (PP + QSLE) e facciamo partire nuovamente l’analisi.

Dobbiamo verificare che l’abbassamento del nodo che ha subito lo spostamento massimo sia inferiore a L/200.

Nel mio caso L= 27 m, quindi 27/200 = 0.135 m. La verifica è quindi soddisfatta.

1 Esercitazione _ Trave reticolare

 

 

In questa esercitazione ho ipotizzato un edificio formato da una struttura reticolare che, tramite dei tiranti, regge 3 solai appesi ì i quali costituiscono i 3 piani della costruzione. La trave reticolare si appoggia su due setti in calcestruzzo armato con 6 pilastri posti tra loro.

La struttura reticolare è composta da moduli a forma di cubo di lato 3*3*3 m, per una dimensione totale di 12*36 m.

 

1_Analisi dei carichi

Innanzitutto, analizzo il solaio tipo, evidenziando i pesi propri dei materiali ed il loro spessore, per poter trovare il carico distribuito per unità di metro quadrato. Devo trovare i carichi G1 (peso propio strutturale), G2 (pesi permanenti portati) e Q (carichi accidentali in base aal destinazione d'uso, tabellati dalla normativa).

Per il carico Q. Destinazione d'uso: uffici. 

Q = 2,00 KN/m2

 

2_Combinazioni dei carichi

Facendo le combinazioni dei carichi allo SLU e allo SLE ottengo

GSLU= 10,31 KN/m2

GSLe= 5,56 KN/m2

Ora devo trovare le aree di influenza delle componenti verticali della struttura.

Ho considerato pilastri i nodi dove i setti coincidono con i nodi della struttura reticolare, mentre i punti neri sono i tiranti che ho posiozionato.

Per trovare i carichi puntuali dovrò fare il seguente calcolo:

F=AInf*GSLU*nPiani

 

3_ Modello 3D

Ora importo il modello Dxf da AutoCAD su SAP2000.

Una volta definito il modello trimidensionale, assegno alle aste la sezione tubolare cava, il materiale (Acciaio S355), rilascio tutte le cerniere affinchè non trasmettano il momento ai nodi. 

Inserisco i carichi puntuali gravanti sui nodi ed i vincoli nei punti dove sono presenti le componenti verticali.


 

4_Dimensionamento Aste

Per trovare gli sforzi presenti nelle aste devo usare il comando di analisi, ignorando la parte DEAD del peso proprio delle strutture e considerando i carichi esterni F.

Una volta inseriti tutti i dati, posso trovare ed estrapolare una cartella Excel con tutte le tensioni di sforzo assiale presenti nelle singole aste. Quindi le ordinerò e prenderò in esame quelle che mi servono Da qui, dividerò le aste in gruppi di sezioni in modo da ottimizzare l'impiego di profili che andrò a prendere dal sagomario.

La formula per il dimensionamento da usare è la sueguente:

A = N/ fyd       

Una volta trovata l'area minima, prenderò dal sagomario una sezione di area superiore al mio risultato.

 

 

5_Asseganzione di una sezione media

Per ottimizzare la costruzione deela travatura, assegno una sezione media per tutte le aste, che sarà una tubolare cava 11,4*3,6 mm.

 

6_Verifica degli spostamenti

Per la verificaallo SLE, devo assegnare il peso proprio della struttura, dopodichè rifarò l'analisi con SAP2000, considerando in più il carico DEAD, per identificare gli spostamenti in basso dovuti ai carichi. 

Lo spostamento verticale non deve superare il rapporto che ha come parametro la luce maggiore tra un appoggio ed un altro.

Lmax = 6m

Umax < L/200

L/200 = 6000/200 = 30 mm

Dalla tabella trovo il caso più grave, dove U è approssimato a 20 mm.

Umax = 20 mm < L/200 = 30 mm      VERIFICATO!

Esercitazione I - Trave reticolare 

Esercitazione I - Trave reticolare 


30 ottobre 2020

Studenti: Dario Stronati _ Lorenzo Vaccari

Il nostro progetto parte dalla concezione di una travatura reticolare con modulo 3x3x3. La pianta a forma rettangolare ha una base di 30mt e una altezza di 12mt. Sono presenti due setti a forma di C simmetrici e specchiati. Il soggetto analizzato si sviluppa su tre piani.

La seconda fase comporta l’importazione del documento .dxf da AutoCAD a SAP2000. 

Analisi dei carichi

4_Procediamo con il calcolo delle aree d’influenza;

5_Prendiamo un pacchetto solaio standard così composto:  

6_Definito il carico ottenuto dalla combinazione dei singoli carichi otteniamo un valore Stato Limite Ultimo pari a 10.10kN/mq; 

7_Con tutti i dati a nostra disposizione possiamo procedere con l’inserire i carichi tramite SAP.

8_Assegnamo i vincoli esterni nei punti prescelti;

9_Ora che tutte le fasi di progettazione sono state portate a termine si può far partire l’analisi;

10_Esportiamo le cartelle utili per il dimensionamento delle aste;

11_Dividiamo le aste sottoposte a trazione e compressione in macro gruppi;

12_Per individuare la sezione da assegnare alle aste della reticolare abbiamo impostato il comando "media" basandoci sul dato area minima di sezione delle aste precedentemente scelte;

 

 

 

 

 

 

 

13_Procediamo con l'assegnazione della nuova sezione a tutte le aste;

 

14_Rilanciamo l’analisi tenendo conto del PesoProprio della struttura utile per verificare abbassamento entro i limiti stabiliti: Umax<L/200

 

 

 

15_Grazie ai dati estrapolati vediamo come la condizione viene soddisfatta. Nel nodo 106 abbiamo un’abbassamento di 6,7mm.

 

Esercitazione 1 - Luca Santilli

Disegno la pianta tipo del mio caso di progetto su AutoCAD tramite un modulo 2,5x2,5x2,5 che si ripete 4 volte lungo l’asse x e 12 lungo l’asse y, ottenendo così una travatura reticolare 10mx30mx2,5m:

  • Asse X: 10m
  • Asse Y: 30m
  • Asse z: 2,5m

 

Per quanto riguarda la distribuzione dimensiono Carico limite ultimo e Carico limite d’esercizio:

  • Carico Limite Ultimo qu = γs*qs + γp*qp * γa*pa   dove γs = 1,3  γp = 1,5  γa = 1,5
  • Carico Limite d’Esercizio qE = Ys*qs + Yp*qp + Ya*qa   dove Ys,Yp,Ya = 1

Quindi:

qu = 10,1 KN/m ²  ,  qE = 5,5 KN/m ²

A questo punto calcolo le Aree di influenza nodali.

Ho 3 tipi diversi di pilastri:

  • A: Ai = 21,875 mq
  • B: Ai = 6,25 mq
  • C: Ai = 3,125 mq

 

Per determinare il carico sui nodi si moltiplica qu con Ai con Np (numero piani, 3):

FA = 662,8 KN  ,  FB = 189,3 KN  ,  FC = 94,6 KN

Apro SAP2000

Assegnati vincoli, carichi, rilasci e sezione il modello è completo e si può procedere all’analisi. 

Ora verifico che il momento e il taglio siano nulli, per avere soddisfatta la condizione della travatura reticolare ed avere solamente sforzo normale

Procedo all’esportazione della tabella dei risultati su Excel.

La risultante tabella su Excel deve essere ordinata e ridotta alle informazioni sullo sforzo assiale, i cui valori ottenuti si dividono in negativi per quanto riguarda le aste compresse e positivi per quanto riguarda le aste tese.

Seleziono 4 aste tese e 4 aste compresse.

Per quanto riguarda le aste tese serve la verifica di resistenza. Si trova l’area minima e si crea la relativa tabella Excel. Confronto i dati con quelli del profilario “Oppo” e seleziono delle sezioni adatte.

Per quanto riguarda invece le aste in compressione si necessita di verifica di resistenza e di instabilità euleriana. Creo la relativa tabella Excel.

A questo punto devo tornare su SAP assegnando un caso ai frame di un profilato medio scelto tra quelli analizzati, tesi e compressi. Stavolta, però, l’obiettivo è quello di ricavare il peso proprio della struttura. Quindi il Pattern da scegliere è DEAD. Ora conosco le reazioni vincolari e il peso della struttura.