SdC(b) (LM PA)

Progettazione Strutturale B (LM PA)

ESERCITAZIONE_3_Valerio Minella

I calcoli riportati di seguito descrivono il dimensionamento della trave più sollecitata di un balcone ad uso residenziale con tre materiali differenti, acciaio, legno e calcestruzzo armato.


Poiché il seguente dimensionamento riprende in parte il procedimento della seconda esercitazione già pubblicata, dove necessario saranno fatti dei riferimenti alla stessa.

L’elemento preso come oggetto di studio è la mensola con area di influenza maggiore di un impalcato strutturale che rispecchia il balcone di un livello di edificio ad uso residenziale meglio descritto dagli elaborati allegati di seguito: 

Step-1: Vengono analizzate tutte le aree di influenza delle travi principali dell’impalcato strutturale per evidenziare l’elemento oggetto del dimensionamento;

LUCE = 1,50 m

AREA DI INFLUENZA = 8,60 m

Step-2: Il calcolo dei carichi strutturali (qs) e permanenti (qp) viene ripreso dalla seconda esercitazione e come descritto nella stessa, questo varierà a seconda della tecnologia dei solai che si sono scelti per il calcolo da effettuare.

Il carico accidentale (qa) differenzia dal valore di 2 KN/mq, presente nell’esercitazione precedente, poiché la normativa (D.M. 14.01.2008) definisce un differente valore di carico qa per gli ambienti suscettibili di affollamento, come nel caso che segue di un balcone che rientra in categoria C2 con valore di carico accidentale pari a:

qa = 4 KN/mq

 

Le tipologie tecnologiche dei solaio sono state scelte in base all’abaco dei modelli UNI10355

SOLAIO-15  PROFILATI ACCIAIO E TAVELLONI – dimensionamento in acciaio;

SOLAIO-12  SOLAIO IN LEGNO – dimensionamento in legno;

SOLAIO-04  LATERO CEMENTO CON BLOCCHI COLLABORANTI – dimensionamento in calcestruzzo armato.

 

ACCIAIO

Step-3 acciaio: Si procede al dimensionamento della sezione della mensola tramite lo stesso procedimento dell’esercitazione precedente, ricavandoci i dati necessari per la scelta del profilo da appositi sagomari, con la sola eccezione del calcolo del Mmax poiché essendo una mensola anziché una trave doppiamente appoggiata analizzata nell’esercitazione precedente, questo Mmax avrà un valore pari a ql2/2

(link esercitazione 2: http://design.rootiers.it/strutture/node/2069

 

 

Step-4 acciaio: Dimensionata la sezione (IPE 240) si procede alla verifica dell’abbassamento massimo (vmax), poiché essendo questo un elemento mensola, il suo abbassamento sarà oggetto di dimensionamento, così come anche il calcolo del peso proprio dell’elemento che in quanto acciaio, in questo caso, non potrà essere trascurato durante il carico di qe;

qe identifica la combinazione di carico per le analisi allo Stato Limite di Esercizio (SLE) che terranno conto dell’abbassamento da verificare:

qe = qs + qp + 0,5 * qa + peso proprio dell’elemento

 

 


ABBASSAMENTO MASSIMO: vmax

Dovendo verificare che la sezione dimensionata tramite lo stesso approccio dell’esercitazione precedente sia efficace per la verifica dell’abbassamento massimo, come prescritto da normativa, si procede con il calcolo del vmax , per poi operare con:

l/vmax > 250         come nel testo della normativa.

Per ricavare il valore di vmax si ha bisogno di effettuare i calcoli mediante il metodo della linea elastica che di seguito sarà sintetizzato per il caso dell’elemento mensola:

- si ricava il momento Ms tramite il taglio virtuale che si opera sull’elemento:

Ms = -ql2/2 + qls – qs2/2

- dall’equazione di legame costitutivo: M = EI χ si ricava la curvatura:

χs = -ql2/2EI + qls/EI – qs2/2EI

- integrando secondo l’equazione di congruenza χ = dϕ/ds:

ϕs = -ql2s/2EI + qls2/2EI – qs3/6EI + c1

- integrando ϕs ds si ricava l’abbassamento in funzione di s:

vs = -ql2s2/4EI + qls3/6EI – qs4/24EI + c1s + c2

poiché si deve ricavare l’abbassamento massimo, allora vs sarà calcolato per s=l, dove “l”è la luce della mensola poiché li si avrà l’abbassamento massimo.

Quindi:

vmax = v(l) = -ql4/4EI + ql4/6EI – ql4/24EI = -ql4/8EI = ql4/8EI


 

Step-4 acciaio: Si ricava quindi vmax = ql4/8EI e si confronta con il limite in normativa per verificare che la sezione sia ben dimensionata:

 

 

LEGNO

Step-3 legno: come per l’acciaio si dimensiona la sezione della mensola come nell’esercitazione precedente con l’inserimento dei dati relativi al materiale dalle tabelle riportate di seguito: 

 

Step-4 legno: una volta ricavati i dati relativi al dimensionamento della sezione in legno, come per l’acciaio si procede con il calcolo dell’abbassamento massimo (SLE), trascurando nel caso del legno il paso proprio della trave poiché il peso specifico di questo materiale è molto basso;

 

 

CALCESTRUZZO ARMATO

Step-4 c.a.: Si ripetono gli step analizzati precedentemente per il dimensionamento della sezione in c.a., per poi arrivare a calcolare anche per questa sezione l’abbassamento massimo vmax ;

 


Esercitazione II : Dimensionamento di una trave in cls armato, acciaio, legno

TRAVE IN CLS ARMATO

Per il dimensionamento di una trave in cls armato, riutilizzo una carpenteria disegnata per il laboratorio di architettura tecnica fatto anni fa.

Dimensiono la trave 2 C-D

Luce: 4m

Interasse: 4m

Area di influenza : 16m

Il solaio in latero cemento:

pignatte 400x140mm e travetti da 100x140mm posti a 50cm di interasse. In un metro di solaio abbiamo perciò due pignatte e due travetti in quanto il rapporto 1/interasse, cioè 1/0,50 m= 2.

Carico strutturale (qs)

 

- soletta collaborante :                      (0,04m x 1m x 1m)/mq x 24KN/mc = 0,96 KN/mq
- travetti:                                        2(0,10m x 0,16m x 1m)/mq x 24KN/mc = 0,768 KN/mq
- pignatta:                                       8 x 9,1 Kg/mq = 72,8 Kg/mq = 0,728 KN/mq

Qs = (0,96 + 0,768 + 0,728 ) KN/mq = 2,456 KN/mq

 

Carico permanente (qp)

 

- pavimento in cotto:                        24Kg/mq = 0,24KN/mq
- malta di sottofondo:                       (0,02m x 1m x 1m)/mq x 18KN/mc = 0,36KN/mq
- strato di allettamento in cls             (0,03m x 1m x 1m)/mq x 24KN/mc= 0,72KN/mq
- isolante in lana di vetro                  (0,08m x 1m x 1m)/mq x 0,2KN/mc = 0,016KN/mq
- massetto delle pendenze                 (0,04m x 1m x 1m)/mq x 18KN/mc = 0,72KN/mq                                              - -intonaco                                       (0,01m x 1m x 1m)/mq x 13KN/mc = 0,13KN/mq

Qp= (0,24 + 0,36 + 0,72 + 0,016 + 0,72 + 0,13 ) KN/mq = 2,186 KN/mq

 

 

Carico accidentale (qa)

Ipotizzo un uso residenziale, seguendo la tabella della normativa quindi ho:

Qa = 2 KN/mq

Dopo aver inserito nel file anche la luce, viene calcolato automaticamente il Mmax agente sulla trave. In seguito imposto le proprietà sia dell’acciaio (fyk) che del calcestruzzo (fck) che vengono automaticamente moltiplicati per i loro coefficienti di sicurezza (1,15 e 1,5).

Essendo la trave composta da due materiali diversi, le proprietà del materiale devono essere omogenizzate secondo un coefficiente (n=15) in modo da ottenere ß e r.

Ora posso impostare la larghezza della trave (b=30 cm) così Excel mi calcola direttamente l’altezza utile della trave, che sommata alla distanza dal baricentro del ferro teso al lembo teso (δ=4) e mi da l’altezza minima

L’altezza minima è 24 cm, che ingegnerizzo scegliendo una sezione alta 25 cm.

E' verificata.

 

TRAVE IN ACCIAIO S235

Ipotizzo lo stesso schema geometrico anche per la carpenteria in acciaio e procedo con il calcolo dei carichi.

Carico strutturale (qs)

- IPE 200: 2 (0,00285 mq x 1 m) / 78,5 KN/mc = 0,447 KN/mq

- Getto in calcestruzzo e lamiera grecata: (21 kN/mc x 0,075 mc) / 1 mq = 1,86 KN/mq

Qs = 0,447 kN/mq + 1,86 kN/mq = 2,307 kN/mq

Carico permanente (qp)

-pavimento, 0,3 KN/mq

-massetto, (0,03 m x 1 m x 1 m) /mq x 19 KN/mc = 0,57 KN/mq

-isolante, (0,06 m x 1 m x 1 m) /mq x 14 Kn/mc = 0,84 KN/mq

Qp = 0,3 KN/mq +  0,57 KN/mq + 0,84 KN/mq = 1,71 KN/mq

Carico accidentale (qa)

Anche qui ho ipotizzato un uso residenziale, seguendo la tabella della normativa quindi ho:

Qa = 2 KN/mq

Compilo il foglio Excel con i tre carichi così da calcolare il qu (la somma dei tre carichi moltiplicati per dei coefficienti di sicurezza x l’interasse).

L’impalcato è lo stesso che ho utilizzato per il dimensionamento della trave in cls armato, quindi mantengo lo stesso interasse di 4 m e la luce di 4. In più devo assegnare un tipo di acciaio: S235. Con i dati assegnati, il file mi calcola automaticamente il Mmax e fd, così da ottenere un Wx minimo.

Scelgo quindi dalla tabella dei profilati IPE la sezione con un Wx maggiore.

Sclego un IPE 360X170

TRAVE IN LEGNO

Carico strutturale (qs)

-tavolato, (0,03 m x 1 m x 1 m) /mq x 7 KN/mc = 0,21 KN/mq

-travetti, 2(0,1 m x 0,14 m x1 m) /mq 6 KN/mq = 0,168 KN/mq

Qs = 0,21 KN/mq + 0,168 KN/mq = 0,378 KN/mq

Carico portato (qp)

-pavimento, 0,3 KN/mq

-massetto, (0,03 m x 1 m x 1 m) /mq x 19 KN/mc = 0,57 KN/mq

-allettamento, (0,06 m x 1 m x 1 m) /mq x 14 Kn/mc = 0,84 KN/mq

Qp = 0,3 KN/mq + 0,57 KN/mq + 0,84 KN/mq = 1,71 KN/mq

Carico accidentale (qa)

Prendendo la tabella dalla normativa ho ipotizzato un uso residenziale quindi ho:

Qa = 2 KN/mq

Compilo il foglio Excel con i tre carichi così da calcolare il qu, che è la somma dei tre carichi x dei coefficienti di sicurezza x l’interasse.

In seguito aggiungo la luce del solaio, in modo da ottenere il Mmax.

Inserisco i dati relativi al tipo di legno scelto per la trave da progettare in modo tale da ottenere la tensione di progetto

 imposto una base di 30 cm ottenendo una Hmin pari a 27,05

Ingegnerizzo questa misura prendendo H = 35

 

Esercitazione 2: Dimensionamento di una trave appoggiata

La seconda esercitazione consiste nel dimensionamento di una trave inflessa considerando le tre principali tecnologie, ossia acciaio, legno e calcestruzzo.

Come prima cosa è necessario disegnare l’impalcato strutturale di un solaio (travi principali, secondarie e travetti) e individuare la trave principale con la maggiore area di influenza –a parità di area di influenza consideriamo la trave con la luce maggiore-.

In questo caso abbiamo una trave di luce 4,5m e un interasse di 3,5m, pertanto l’area di influenza è di 15,75m2.

Per poter dimensionare una trave, dobbiamo tener conto di tre distinte tipologie di carico:

  1. Il peso proprio (qs) rappresenta il peso della struttura portante;
  2. I sovraccarichi permanenti (qp) sono tutti quelli che scaricano costantemente sul solaio (intonaco, controsoffitto, massetto di allettamento, pavimento, incidenza dei tramezzi, incidenza degli impianti);
  3. Il sovraccarico accidentale (qa) è rappresentato dal sovraccarico d’uso, che varia in funzione della destinazione d’uso dell’edificio, più un sovraccarico del sottotetto per la manutenzione.

Di conseguenza la combinazione a stato limite ultimo è qu = 1,3·qs + 1,5·qp + 1,5·qa  in cui 1,3 e 1,5 sono coefficienti di sicurezza imposti dalla normativa per cautelarci da eventuali collassi.

 

SOLAIO IN ACCIAIO

1.Calcolo peso proprio strutturale (qs)

  • Lamiera grecata = 0,12 kN/m2
  • Cls alleggerito = (0,075mx12kN/m3 + 0,15mx12kN/m3)/2 = 1,35 kN/m2
  • TOT = 1,47 kN/m2

2.Calcolo carico permanente (qp)

  • Pavimentazione = 0,4kN/m2
  • Massetto = 0,035mx21kN/m3 = 0,73kN/m2
  • Isolante in fibra di legno = 0,04mx1,6 kN/m3 = 0,064kN/m2
  • Incidenza impianti = 0,5kN/m2
  • Incidenza tramezzi = 1kN/m2
  • TOT = 2,69 kN/m2

3.Calcolo carico accidentale (qa)

  • Uso residenziale = 2kN/m2

A questo punto è possibile inserire i dati ottenuti per il dimensionamento della trave all’interno del foglio Excel (compresi luce e interasse) in modo da ottenere la combinazione a stato limite ultimo qu, il momento Mmax e il modulo di resistenza Wxmin.

Carico distribuito qu

qu = (1,3 qs + 1,5 qp + 1,5 qa) x interasse

M max

Si tratta di una trave doppiamente appoggiata il cui momento massimo si trova alla mezzeria della luce e equivale a ql2/8, in cui “l” è la luce dell’elemento e “q” il carico qu distribuito.

Wx min

Utilizzando la formula di Navier σmax = (Mmax/Ix) ymax in cui Ix è il momento d’inerzia della sezione secondo l’asse x e y è la distanza massima delle fibre dall’asse baricentrico, si ricava Wmin = Mmax/fd in cui fd è la resistenza di progetto dell’acciaio scelto.

Wmin < Wdesign

trave scelta :IPE 240

 

SOLAIO IN LEGNO

1.Calcolo peso proprio strutturale (qs)

  • Travetti in legno = [(0,08mx0,12m)·6kN/m3 ]ntravetti = 0,11 kN/m2
  • Tavolato in legno = 0,03mx6kN/m3= 0,18 kN/m2
  • TOT = 0,29 kN/m2

2.Calcolo carico permanente (qp)

  • Pavimentazione = 0,4kN/m2
  • Massetto = 0,035mx21kN/m3 = 0,73kN/m2
  • Isolante in fibra di legno = 0,04mx1,6 kN/m3 = 0,064kN/m2
  • Incidenza impianti = 0,5kN/m2
  • Incidenza tramezzi = 1kN/m2
  • TOT = 2,69 kN/m2

3.Calcolo carico accidentale (qa)

  • Uso residenziale = 2kN/m2

A questo punto è possibile inserire i dati ottenuti per il dimensionamento della trave all’interno del foglio Excel (compresi luce e interasse) in modo da ottenere la combinazione a stato limite ultimo qu, il momento Mmax e la resistenza di progetto fd.

Da questo valore, fissando una base si determina l’altezza minima che la sezione della trave deve avere.

 

SOLAIO IN LATEROCEMENTO

1.Calcolo peso proprio strutturale (qs)

  • Pignatte = 0,12 kN/m2
  • Travetti = [(0,14mx0,25m)·25kN/m3 ]ntravetti = 1,75 kN/m2
  • Gettata in cls = 0,05m·25kN/m3= 1,25 kN/m2
  • TOT = 3 kN/m2

2.Calcolo carico permanente (qp)

  • Pavimentazione = 0,4kN/m2
  • Massetto = 0,035mx21kN/m3 = 0,73kN/m2
  • Isolante in fibra di legno = 0,04mx1,6 kN/m3 = 0,064kN/m2
  • Incidenza impianti = 0,5kN/m2
  • Incidenza tramezzi = 1kN/m2
  • TOT = 2,69 kN/m2

3.Calcolo carico accidentale (qa)

  • Uso residenziale = 2kN/m2

A questo punto è possibile inserire i dati ottenuti per il dimensionamento della trave all’interno del foglio Excel (compresi luce e interasse) in modo da ottenere la combinazione a stato limite ultimo qu, il momento Mmax e la resistenza di progetto sia dell’acciaio che compone l’armatura sia del calcestruzzo.

Da questo valore, fissando una base si determina l’altezza minima che la sezione della trave deve avere fino al centro delle aree dell’armatura, a cui bisogna aggiungere un certo delta che rappresenta la distanza tra il centro delle aree dell’armatura e la “fibra” maggiormente tesa.

Esercitazione 3: Dimensionamento di una trave a sbalzo in legno, acciaio e cemento armato

SOLAIO IN LEGNO (Impalcato di una casa unifamiliare)

CARICACCIDENTALE (valido per tutte e tre le tipologie di solaio)

dipende dalla tipologia edilizia, abitativa: qa=200kg/mp ----> 2 KN/mq

Prendo in esame la trave 4-7 perche è quella maggiormente sollecitata.

Interasse di 4,75m 

Area di influenza di 23,75mq

CARICO STRUTTURALE   (Trave + Travetti + Regolo)

qs= 0,7KN/mq

CARICO PERMANENTE (Pavimento + Malta di allettamento + Massetto + Tavolato + Controsoffitto)

-Pavimento: -Peso specifico: Yp= 400KN/mc

                    -Area: Ap= (25*3)*2= 150cmq =  0,015mq

                    -Carico strutturale: qpp= Ap * 1 * Yp=0,015*1*400=6Kg/m

-Malta di Allettamento: -Peso specifico: Ya= 1700Kg/mc

                                     -Area: Aa=2*50= 100cmq = 0,01mq

                                     -Carico strutturale: qpa = Aa*1*Ya = 0,01*1*1700 = qpa= 17Kg/m

-Massetto: -Peso specifico: Ym = 1400 Kg/mc

                  -Area: Am=5*50= 250 cmq = 0,025mq

                  -Carico strutturale: qpm = Am*1*Ym = 0,025*1*1400 = 35Kg/m

-Tavolato: -Peso specifico: Yt= 600Kg/mc

                 -Area: At=5*50= 250 cmq= 0,025mq

                 -Carico strutturale: qpt = At*1*Yt = 0,025*1*600 = 15 Kg/m

-Cpntrosoffitto: -Peso specifico: Yc = 2000Kg/mc

                         -Area: Ac=1,5*50 = 75 cmq = 0,0075mq

                         -Carico strutturale: qpc = Ac*1*Yc = 0,0075*1*2000 = 15 Kg/m

Carico permanente totale --> qp = qpp + qpa + qpm + qpt + qpc = 6+17+35+15+15 = 88Kg/m --> 0,88KN/m 

                                         -->qp = 1,76 KN/mq

SOLAIO IN ACCIAIO (Impalcato di una casa unifamiliare)

CARICACCIDENTALE (valido per tutte e tre le tipologie di solaio)

dipende dalla tipologia edilizia, abitativa: qa=200kg/mp ----> 2 KN/mq

Prendo in esame la trave 4-7 perche è quella maggiormente sollecitata.

Interasse di 4,75m 

Area di influenza di 23,75mq

CARICO STRUTTURALE (Travetto IPE + Lamiera grecata + Getto di CLS)

qs = 1,7 KN7Mq

CARICO PERMANENTE (Pavimento + Malta di allettamento + Isolante + Controsoffitto)

-Pavimento: -Peso specifico: Ya = 400 Kg/mc

                    -Area: Ap = (25*3)*2 = 150cmq = 0,015 mq

                    -Carico strutturale: qpp= Ap*1*Yp = 0,015*1*400 = 6Kg/m

-Malta di allettamento: -Peso specifico: Ya = 1700Kg/mc

                                    -Area: Aa =2*50 = 100cmq = 0,01mq

                                    -Carico strutturale: qpa = Aa*1*Ya = 0,01*1*1700= 17Kg/m

-Isolante: -Peso specifico: Yi=600Kg/mc

                -Area: Ai = 0,3*50 = 15 cmq = 0,0015mq

                -Carico strutturale: qpi = Ai*1*Yi = 0,0015*1*600 = 0,9Kg/m

-Cpntrosoffitto: -Peso specifico: Yc = 2000Kg/mc

                         -Area: Ac=1,5*50 = 75 cmq = 0,0075mq

                         -Carico strutturale: qpc = Ac*1*Yc = 0,0075*1*2000 = 15 Kg/m

Carico permanente totale ---> qp = qpp + qpa + qpi + qpc = 6+17+0,9+15 = 38,9 kG7m ---> 0,38 KN/m

                                         ---> qp = 0,778 KN/mq

Wx = 422,94 cmc   --->    scelgo quindi un IPE 300

SOLAIO IN LATERO-CEMENTO

CARICACCIDENTALE (valido per tutte e tre le tipologie di solaio)

dipende dalla tipologia edilizia, abitativa: qa=200kg/mp ----> 2 KN/mq

Prendo in esame la trave 4-7 perche è quella maggiormente sollecitata.

Interasse di 4,75m 

Area di influenza di 23,75mq

CARICO STRUTTURALE (Calcestruzzo + Pignatta)

-Calcestruzzo: -Peso specifico: Yc = 2500 kg/mc

                        -Area: Ac = (50*22)-(18*40) = 0,038mq

                        -Carico strutturale: qps = Ac*1*Yc = 0,038*1*2500 = 95Kg/m

-Pignatta: -Peso specifico laterizio: YL = 800Kg/mc

                -Area: AL = (20*18)*2 = 0,072 mq

                -Carico strutturale: qsL = AL*1*YL = 0,072mq*1*800 = 57,6 Kg/m

Carico strutturale totale: qs = qsc + qsL = 95+57,6 = 152,6 Kg/m ---> 1,526 KN/m 

                                       ----> qs=3,05 KN/mq

CARICO PERMANENTE (Pavimento + Malta di allettamento + Isolante + Massetto + Intonaco)

-Pavimento: -Peso specifico: Yp = 400 Kg/mc

                     -Area: Ap = (25*3)*2 = 150 Kg/cmq = 0,015 mq

                     -Carico struttirale: qpp = Ap*1*Yp = 0,015*1*400 = 6Kg/m

-Malta di allettamento: -Peso specifico: Ya = 1700 Kg/mc

                                    -Area: Aa=2*50 = 100cmq = 0,01mq

                                    -Carico strutturale: qpa = Aa*1*Ya = 0,01*1*1700 = 17 Kg/m

-Isolante: -Peso specifico: Yi = 600 Kg/mc

                -Area: Ai = 0,3*50=15cmq =0,0015 mq

                -Carico strutturale: qpi = Ai*1*Yi = 0,0015*1*600 = 0,9 Kg/m

-Massetto: -Peso specifico: Ym: 1400 Kg/mc

                  -Area: Am = 5*50 = 250 cmq = 0,025 mq

                 -Carico strutturale: qpm = Am*1*Ym = 0,025*1*1400 = 35 Kg/m

-Intonaco: -Peso specifico: Yin = 2000 Kg/mc

                 -Area: Ain=1,5*50 = 75 cmq = 0,0075 mq

                 -Carico strutturale: qpin = Ain*1*Yin = 0,0075*1*2000 = 15 Kg/m

Carico permanente totale: qp = qpp + qpa + qpi + qpm + qpin = 6+17+0,9+35+15 = 73,9 Kg/m __> 0,75 KN/m

                                          ----> qp = 1,478 KN/mq

 

 

 

ESERCITAZIONE3_Tommaso Passerini


 

 

In questa esercitazione ci troviamo davanti al problema di dimensionare la sezione di una trave a sbalzo in legno, calcestruzzo armato e acciao.

L’impalcato di riferimento si rifà a quello dell’esercitazione precedente modificato per realizzare l’aggetto: questo grazie l’arretramento della fila di pilastri di destra di 2,5 metri.

 

 

INTERASSE = 3,5 m

LUCE = 2,5 m

AREA INFLUENZA = 8,75 m2

 

Passo 1: Trovata l’area d’influenza maggiore tra le travi a sbalzo il procedimento di dimesionamento iniziale è lo stesso utilizzato nell’esercitazione precedente (link) con due modifiche sostanziali:

  • Il momento massimo MMAX sarà quello di una mensola quindi uguale a qul2/2 ;
  • Il carico accidentale qa sarà equivalente a 4 kN/m2 , coefficiente dato dalla Normativa per carici accidentali su balconi (categoria C2).

Passo 2: Dopo aver dimensionato la sezione, dobbiamo effettuare la verifica a deformabilità controllando che l’abbassamento massimo della trave in rapporto con la sua luce deve essere maggiore di 250 (valore dato da Normativa):

                                            l/ vmax > 250

Dove :

                                            vmax = ql4/8EI

 

 

 

Per trovare vmax è necessario utilizzare il metodo della linea elastica, vediamo i passaggi:

 

  • Il momento flettente nella generica sezione x è uguale a M = -qx2/2
  • Ci troviamo la curvatura χ = (qx2/2) (1/EI)
  • Integriamo χ e troviamo la rotazione ϕ = (qx3/6) (1/EI) + C1
  • Integriamo nuovamente trovando lo spostamento v = (qx4/24) (1/EI) + C1x + C2
  • Osserviamo che in corrispondenza dell’incastro B (x=l) devono essere nulli tanto l’abbassamento quanto la rotazione.
  • Quindi per x=l si ottiene  C1 = -ql3/6  e C2 = ql4/8
  • Infine sostituendo le due costanti d’integrazione a v ci troviamo l’abbassamento massimo vmax = ql4/8EI

 

Questo procedimento vale per tutte e tre le tecnologie e si effettua allo SLE quindi i carichi sulla struttra verrano ricombinati con la combinazione di carico agli SLE data da normativa.

Andiamo ora a dimensionare le tre tecnologie strutturali ( i solai sono gli stessi dell’esercitazione precedente)

 

CALCESTRUZZO ARMATO

 

 

Fatto il passo 1 la sezione della mia trave in calcestruzzo armato equivale a 30x50 cm.

Come nell’esercitzione precedente riverifico che la sezione sia verificata aggiungendo nel qu il peso della trave.

Applico la combinazione di carico agli SLE ed inserisco il modulo di elasticità del cls armato in modo da trovarmi il momento d’inerzia Ix .

Ora abbiamo tutti gli elementi per calcolarci il vmax

 

LEGNO

 

Fatto il passo 1 la sezione della mia trave in legno equivale a 25x45 cm.

Non c’è bisogno di verificare il peso proprio della trave poichè il legno ha peso specifico basso.

Applico la combinazione di carico agli SLE ed inserisco il modulo di elasticità del cls armato in modo da trovarmi il momento d’inerzia Ix .

Ora abbiamo tutti gli elementi per calcolarci il vmax

 

ACCIAIO

 

Fatto il passo 1 il profilato preso è di un IPE 300.

Successivament controllo che la sezione sia verificata aggiungendo nel qu il peso della trave.

Applico la combinazione di carico agli SLE ed inserisco il modulo di elasticità del cls armato in modo da trovarmi il momento d’inerzia Ix .

Ora abbiamo tutti gli elementi per calcolarci il vmax

ESERCITAZIONE 3 - Dimensionamento di una trave a sbalzo ( C.A. , acciaio e legno)

Per dimensionare una trave a sbalzo, ovvero una mensola, bisogna individuare la trave più sollecitata come nell’esercitazione precedente.

 

Nella prima parte bisogna sempre considerare i carichi agenti sulla trave (prenderemo come valore quelli ottenuti precedentemente).

Naturalmente cambierà il valore del momento massimo, che per una trave doppiamente appoggiata vale ql2/8, invece per una mensola il momento massimo equivale a ql2/2.

 

Solaio in C.A. 

Stato Limite Ultimo

Qu = 45.31 kg/m2  

Mmax = 277.50 kNxm

Sezione 30x45

 

Stato limite di esercizio

Inserire il modulo elastico del C.A. E = 21000 N/mm2

Si ottengono i valori dell’inerzia e dello spostamento massimo, in questo caso

Ix = 227813 cm4

vmax = 1.18 cm

la sezione è verificata dal momento che il rapporto tra la luce e lo spostamento deve essere maggiore di 250.

 

Solaio in acciaio

Stato Limite Ultimo

Qu = 50.87 kg/m2  

Mmax = 311.59 kNxm

IPE 450, Wx = 1500 cm3

 

Stato limite di esercizio

Dalla tabella prendere i valori di inerzia e peso

Ix = 33740 cm4

Peso = 0.77 kN/m

Di conseguenza si ricava il valore del carico di esercizio ed inserendo il valore del modulo elastico dell’acciaio si ottiene infine lo spostamento massimo.

vmax = 0.84 cm

La sezione è verificata dal momento che il rapporto tra la luce e lo spostamento deve essere maggiore di 250.

 

 

Solaio in legno 

Stato Limite Ultimo

Qu = 35.50 kg/m2  

Mmax = 217.50 kNxm

Sezione 35x55

 

Stato limite di esercizio

Inserire il modulo elastico E = 8000 N/mm2

Si ottengono i valori dell’inerzia, del carico di esercizio e dello spostamento massimo, in questo caso

Ix = 485260 cm4

Qe = 20 kN/m

vmax = 0.95 cm

La sezione è verificata dal momento che il rapporto tra la luce e lo spostamento deve essere maggiore di 250.

Esercitazione 2: dimensionamento di una trave appoggiata

Dopo aver disegnato un solaio a scelta selezionare la trave più sollecitata e definire il dimensionamento di essa con diverse tipologie di solaio.

SOLAIO IN LEGNO

             

ANALISI DEI CARICHI

Qs= carichi strutturali

volume [mc/mq] x peso specifico [KN/mc] = [KN/mq]

  • travetti secondari in legno lamellare (1 al mq) 25x25cmq        

        → (0.1x0.1x1) [mc/mq] x 4.10 [KN/mc] = 0.041 KN/mq

  • tavolato in legno lamellare 4 cm

        → (0.04x1x1) [mc/mq] x 4.10 [KN/mc] = 0.256 KN/mq

Qs= (0.041 + 0.256) KN/mq = 0.297 KN/mq

 

Qp=carichi permanenti non strutturali

volume [mc/mq] x peso specifico [KN/mc] = [KN/mq]

  • pavimento in parquet 2cm

        → (0.02x1x1) [mc/mq] x 7.2 [KN/mc] = 0.144 KN/mq

  • massetto 5cm

        → (0.05x1x1) [mc/mq] x 19 [KN/mc] = 0.95 KN/mq

  • incidenza tramezzi

        → 1 KN/mq

  • incidenza impianti

        → 0.5 KN/mq

Qp= (0.144 + 0.95 + 1 + 0.5) KN/mq = 2.594 KN/mq

 

Qa= carichi accidentali

Ambiente ad uso residenziale- categoria A

Qa= 2 KN/mq

 

Inserire i valori trovati nella tabella excell, quindi trovare il carico totale Qu, la tabella di calcolo li somma tra loro e li moltiplica per i tre coefficienti di sicurezza γG1 γG2  e γG3 in seguito li moltiplica per l’interasse della trave che deve essere inserito.

        → Qu= (Qs x γG1 + Qp x γG2  + Qa x γG3 ) x interasse

             Qu= (0.297x1.3 + 2.594x1.5 + 2x1.5) KN/mq x 4m = 29.11 KN/m

Conoscendo la luce della trave e il carico applicato su di essa calcolare Mmax. Essendo una trave appoggiata il momento massimo è ql2/8 quindi:

        → Mmax= Qu x l2/8 = 29.11 KN/m x (8)2/8 = 232.87 KNm

           

PROGETTO

Dopo avere fatto l’analisi dei carichi e dopo aver trovato il momento massimo dimensionare la trave.

Per calcolare la tensione di progetto Fd per quanto riguarda il legno si devono tenere in considerazione alcuni dati:

  • Si deve scegliere la tipologia di legno (in questo caso lamellare GL28h).
  • Andare a controllare i valori della resistenza caratteristica a flessione (Fmk= 28 N/mm2).
  • Prendere il valore del coefficiente parziale di sicurezza (γm= 1.45)
  • Prendere un coefficiente che riduce i valori della resistenza che tiene conto delle condizioni di umidità. In questo caso: classe di servizio 2, classe di durata del carico media

Kmod= 0.80

Inserendo nella tabella questi valori excel calcola la tensione di progetto

             → Fd= kmod x fmk / γm = 15.45 N/mm2

Ricavata la tensione di progetto calcolare l’altezza minima della sezione della trave ipotizzando una base (b=35cm).

Una volta trovata l’altezza minima scegliere un’altezza superiore a quest’ultima che sia compatibile con profili esistenti (in questo caso Hmin= 50.83cmH= 55.00cm così da avere una trave 35x55).

 

SOLAIO IN CALCESTRUZZO ARMATO

            

ANALISI DEI CARICHI

Qs= carichi strutturali

volume [mc/mq] x peso specifico [KN/mc] = [KN/mq]

  • travetti (2 al mq) 16x10cmq        

        → 2x (0.16x0.1x1) [mc/mq] x 25 [KN/mc] = 0.8 KN/mq

  • soletta collaborante 4 cm

        → (0.04x1x1) [mc/mq] x 25 [KN/mc] = 1 KN/mq

  • pignatta (8 pz al mq)

        → 8x 0.083 KN/mq = 0.664 KN/mq

Qs= (0.8 + 1 + 0.664) KN/mq = 2.464 KN/mq

 

Qp=carichi permanenti non strutturali

volume [mc/mq] x peso specifico [KN/mc] = [KN/mq]

  • pavimento in parquet 2cm

        → (0.02x1x1) [mc/mq] x 7.2 [KN/mc] = 0.144 KN/mq

  • massetto 5cm

        → (0.05x1x1) [mc/mq] x 19 [KN/mc] = 0.95 KN/mq

  • intonaco 1 cm

        →(0.01x1x1) [mc/mq] x 16 [KN/mc] = 0.16 KN/mq

  • isolante acustico 3cm

        →(0.03x1x1) [mc/mq] x 0.3 [KN/mc] = 0.009 KN/mq

  • incidenza tramezzi

        → 1 KN/mq

  • incidenza impianti

        → 0.5 KN/mq

Qp= (0.144 + 0.95 + 0.16 + 0.009 + 1 + 0.5) KN/mq = 2.763 KN/mq

 

Qa= carichi accidentali

Ambiente ad uso residenziale- categoria A

Qa= 2 KN/mq

 

Inserire i valori trovati nella tabella excell, quindi trovare il carico totale Qu, la tabella di calcolo li somma tra loro e li moltiplica per i tre coefficienti di sicurezza γG1 γG2  e γG3 in seguito li moltiplica per l’interasse della trave che deve essere inserito.

        → Qu= (Qs x γG1 + Qp x γG2  + Qa x γG3 ) x interasse

             Qu= (2.464x1.3 + 2.763x1.5 + 2x1.5) KN/mq x 4m = 41.39 KN/m

Conoscendo la luce della trave e il carico applicato su di essa calcolare Mmax. Essendo una trave appoggiata il momento massimo è ql2/8 quindi:

        → Mmax= Qu x l2/8 = 41.39 KN/m x (8)2/8 = 331.13 KNm

          

PROGETTO

Dopo avere fatto l’analisi dei carichi e dopo aver trovato il momento massimo dimensionare la trave.

Per il cemento armato sono necessarie due tensioni di progetto poiché il materiale non è omogeneo:

  • fyd per l’acciaio che deve resistere a trazione → fyd= fyk/ γs

          dove γs è un coefficiente di sicurezza pari a 1.15 e fyk è la tensione caratteristica di snervamento dell’acciaio               che dipende dalla tipologia di acciaio (in questo caso acciaio S450 → fyk= 450 N/mm2).

                  → fyd= (450 N/mm2)/1.15= 391.30 N/mm2

  • fcd per il calcestruzzo che deve resistere a compressione → fcd= acc (fckc)

          dove acc è un coefficiente riduttivo pari a 0.85, γc è il coefficiente di sicurezza del calcestruzzo pari a 1.5 e fck            è la caratteristica a compressione del calcestruzzo data dalla tipologia (in questo caso C50 → fck= 50 N/mm2).

                  → fcd = 0.85x(50 N/mm2)/1.5= 28.33 N/mm2

             

In questo modo nella tabella excel vengono calcolati automaticamente i valori di ß e r, tenendo conto del coefficiente di omogeneizzazione n=15.

        → ß= fcd/(fcd+(fyd/n))= 0.52                 

        → r= √2/fcd (1-ß/3)xß = 2.16

Per trovare l’altezza della trave:

  • Stabilire una base (in questo caso b= 30cm)
  • Trovare l’altezza utile della sezione reagente in calcestruzzo al di sopra dell’armatura (calcolata automaticamente su excel)

        → Hu= r √Mmax/b =42.55cm

  • Porre nella tabella δ= 5cm che è la parte in calcestruzzo sotto l’armatura
  • Calcolare cosi Hmin= hu + δ = 47.55cm
  • Una volta trovata l’altezza minima scegliere un’altezza superiore a quest’ultima che sia compatibile con profili esistenti (in questo caso Hmin= 47.55cmH= 50.00cm così da avere una trave 30x50).

           

 

SOLAIO IN ACCIAIO

                 

ANALISI DEI CARICHI

Qs= carichi strutturali

volume [mc/mq] x peso specifico [KN/mc] = [KN/mq]

  • trave secondaria in acciaio IPE300        

        → (0.00588x1) [mc/mq] x 78 [KN/mc] = 0.459 KN/mq

  • lamiera grecata in acciaio sp.8/10mm

        → 0.06 KN/mq

  • getto in calcestruzzo

        →(0.06x1x1) [mc/mq] x 22 [KN/mc] = 1.32 KN/mq

Qs= (0.459 + 0.06 + 1.32) KN/mq = 1.839 KN/mq

 

Qp=carichi permanenti non strutturali

volume [mc/mq] x peso specifico [KN/mc] = [KN/mq]

  • pavimento in parquet 2cm

        → (0.02x1x1) [mc/mq] x 7.2 [KN/mc] = 0.144 KN/mq

  • massetto 5cm

        → (0.05x1x1) [mc/mq] x 19 [KN/mc] = 0.95 KN/mq

  • isolante 3cm

        →(0.03x1x1) [mc/mq] x 0.3 [KN/mc] = 0.009 KN/mq

  • incidenza tramezzi

        → 1 KN/mq

  • incidenza impianti

        → 0.5 KN/mq

Qp= (0.144 + 0.95 +0.009 + 1 + 0.5) KN/mq = 2.603 KN/mq

 

Qa= carichi accidentali

Ambiente ad uso residenziale- categoria A

Qa= 2 KN/mq

 

Inserire i valori trovati nella tabella excell, quindi trovare il carico totale Qu, la tabella di calcolo li somma tra loro e li moltiplica per i tre coefficienti di sicurezza γG1 γG2  e γG3 in seguito li moltiplica per l’interasse della trave che deve essere inserito.

        → Qu= (Qs x γG1 + Qp x γG2  + Qa x γG3 ) x interasse

             Qu= (1.839x1.3 + 2.603x1.5 + 2x1.5) KN/mq x 4m = 43.18 KN/m

Conoscendo la luce della trave e il carico applicato su di essa calcolare Mmax. Essendo una trave appoggiata il momento massimo è ql2/8 quindi:

        → Mmax= Qu x l2/8 = 43.18 KN/m x (8)2/8 = 345.45 KNm

           

PROGETTO

Dopo avere fatto l’analisi dei carichi e dopo aver trovato il momento massimo dimensionare la trave.

Per calcolare la tensione di progetto Fyd per quanto riguarda l’acciaio si devono tenere in considerazione alcuni dati:

  • Si deve scegliere la tipologia d’acciaio (in questo caso acciaio S235).
  • Andare a controllare i valori della resistenza caratteristica a flessione (fyk= 235 N/mm2).
  • Prendere il valore del coefficiente parziale di sicurezza (γm= 1.05)

Inserendo nella tabella questi valori excel calcola la tensione di progetto

             → Fyd= fyk / γm = 223.81 N/mm2

Ricavata la tensione di progetto calcolare il modulo di resistenza a flessione minimo

              → Wxmin= Mmax/fyd = 1543.48cm3

Una volta trovata Wxmin  scegliere in un tabellario ipe un profilato che abbia Wipe> Wxmin

(in questo caso Wipe = 1928cm3  → Hipe= 500mm).

ESERCITAZIONE_03 dimensionamento di una mensola

Esercitazione sull’analisi della deformabilità di una mensola nelle tre diverse carpenterie: ACCAIO, LEGNO E CEMENTO ARMATO.

Nella figura è rappresentato il solaio con travi e pilastri preso in esame per la carpenteria in LEGNO E CEMENTO ARMATO, in evidenza l’area di influenza (18.025mq) e la trave più sollecitata; 

Dopo aver individuato l’area di influenza e la trave maggiormente sollecitata vado a riportare sul foglio Excel il valore dell’interasse del solaio: 5,15m. 

DIMENSIONAMENTO TRAVE CALCESTRUZZO ARMATO

LUCE: 3,50 m

INTERASSE: 5.15 m

AREA: 18.025mq

In un solaio di cemento armato il carico strutturale è dovuto al peso dei travetti, della soletta collaborante e dei mattoni.

Il peso degli intonaci, delle mattonelle, dei massetti di livellamento, degli impianti, dei tramezzi divisori interni all’edificio, si configurano come carichi permanenti ma non strutturali.

Pertanto per calcolare il peso a metro quadro di ogni elemento tecnologico dovrò moltiplicare la dimensione di quel materiale (volume) per il suo peso specifico (espresso in kN/m3).

 

Sovraccarico strutturale

  • peso pignatte: n°pignatte x peso singola pignatta (kg) = 2 x 8 kg = 16 kg = 0,16 KN

·         peso travetti: volume (mc/mq) x peso specifico del cls (KN/mc)= (0,16 x 0,1 x 1) (mc/mq) x 25 KN/mc = 0,4 KN

  • peso soletta:  0,05 m x 25 KN/mc = 1,25 KN/mc

Peso qs totale: 0,16 KN/mq + 0,4 KN/mq + 1,25 KN/mq = 1,81 KN/mc

 

Sovraccarico permanente:

·         peso pavimento in cotto (21x21x2): peso x mq =  0,24 KN/mq

·         peso massetto in cls alleggerito: spessore (m) x peso unitario (KN/mq) = 0,04 m x 16 KN/mq = 0,64 KN/mq

·         peso isolante: spessore (m) x peso unitario (KN/mq) = 0,03 m x 1 KN/mq = 0,03 KN/mq

  • incidenza tramezzi: 1 KN/mq
  • incidenza impianti: 0,5 KN/mq

Peso qp totale: 0,24 KN/mq + 0,64 KN/mq + 0,3 KN/mq + 1 KN/mq + 0,5 KN/mq = 2,68 KN/mq

Sovraccarico accidentale:

Da normativa, per edificio ad uso ospedaliero (C1), qa = 3 KN/mq.

Inserisco i valori trovati nel foglio Excel e trovo qu (kN/mq), carico distribuito sulla trave, in automatico tramite la formula data: qu = ( 1,3 x qs + 1,5 x qp + 1,5 x qa) x interasse.

Successivamente inserisco la Luce 3,5m della trave per calcolare quanto vale il momento flettente massimo (Mmax) agente sulla trave.

Inserisco la classe di resistenza caratteristica dell'acciaio (fyk) da armatura B450C che vale 450 MPa (N/mm2) e la classe di resistenza del calcestruzzo (fck) per uso ordinario C2530 che è uguale a 25 MPa.

Excel mi calcola la tensione di progetto dell'acciaio (fyd), servendosi del coefficiente riduttivo per le resistenze a lunga durata acc = 0,85, e la tensione di progetto del calcestruzzo (fcd) utilizzando il coefficiente parziale di sicurezza del calcestruzzo γc = 1,15

Trovati i valori della tensione di progetto e del momento massimo, inserisco la base b della trave (40 cm) per trovare l'altezza utile della sezione hu dalla quale ricaverò l'altezza minima della sezione Hmin.

La mia trave non è verificata e devo modificare la sezione della mia trave da H da 55 a 85.

DIMENSIONAMENTO TRAVE IN LEGNO

11

LUCE: 3,50 m

INTERASSE: 5.15 m

AREA: 18.025mq

 

Sovraccarico strutturale

·         peso tavolato in legno: volume (mc/mq) x peso specifico (KN/mq)= 0,025 x 1 x 1) (mc/mq) x 6,9 KN/mq = 0,1725 KN/mq

  • peso caldana in cls: spessore (m) x peso specifico (KN/mq) = 0,04 m x 25 KN/mq = 1 KN/mq
  • peso del travetto: area (mq) x peso specifico (KN/mq) = 0,026 mq x 6,9n KN/mc = 0,1794 KN/mq

 

Peso qs totale:  0,1725 KN/mq + 1 KN/mq + 0,1794 KN/mq = 1,3519 KN/mq

 

Sovraccarico permanente

peso pavimento in cotto (21x21x2): peso x mq =  0,24 KN/mq

·         peso massetto in cls alleggerito: spessore (m) x peso unitario (KN/mq) = 0,09 m x 18 KN/mq = 1,62 KN/mq

·         peso isolante: spessore (m) x peso unitario (KN/mq) = 0,03 m x 1 KN/mq = 0,03 KN/mq

·         incidenza tramezzi 1 KN/mq

  • incidenza impianti 0,5 KN/mq

Peso qp totale: 0,24 KN/mq+ 1,62 KN/mq + 0,04 KN/mq + 1 KN/mq + 0,5 KN/mq = 2,4 KN/mq

Sovraccarico accidentale

Da normativa, per edificio ad uso ospedaliero, qa = 3 KN/mq

Inserisco i valori trovati nel foglio Excel e trovo qu (kN/mq), carico distribuito sulla trave, in automatico tramite la formula data: qu = ( 1,3 x qs + 1,5 x qp + 1,5 x qa) x interasse.

Successivamente inserisco la Luce 3,5m della trave per calcolare quanto vale il momento flettente massimo (Mmax) agente sulla trave.

Inserisco in Excel la tensione caratteristica a flessione fmk del legno lamellare scelto che equivale a 24 MPa.

La normativa invece mi fornisce la tensione di progetto fmd attraverso il coefficiente diminutivo dei valori di resistenza del materiale (kmod = 0,80)  ed il coefficiente parziale di sicurezza (γm = 1,45) che dipende dal materiale preso in esame.

Trovo il valore della tensione di progetto fd ed il momento massimo Mmax

La base b della trave è uguale a 12cm e lo utilizzo per ricavare l'altezza minima hmin che deve avere la mia sezione. Trovo il valore di H che deve essere maggiore di hmin.

La mia trave non è verificata.

Modifico le dimensioni della trave: b=30, H=60; ed è verificata.

DIMENSIONAMENTO TRAVE IN ACCIAIO

LUCE: 3,50 m

INTERASSE: 5.15 m

AREA: 18.025mq

Sovraccarico strutturale

·         peso lamiera grecata: spessore (m) x peso specifico (KN/mq) = 0,07 m x 0,1 KN/mq = 0,007 KN/mq

  • peso soletta: volume (mc/mq) x peso specifico (KN/mq) = 0,18 mc x 25 KN/mq = 4,5 KN/mq
  • peso travetto IPE 140: 0,129 KN/mq

Peso qs totale: 0,007 KN/mq + 4,5 KN/mq + 0, 12 KN/mq = 4, 67 KN/mq

 

Sovraccarico permanente

peso pavimento in cotto (21x21x2): peso x mq =  0,24 KN/mq

·         peso massetto in cls alleggerito: spessore (m) x peso unitario (KN/mq) = 0,04 m x 18 KN/mq = 0,72 KN/mq

·         peso isolante : spessore (m) x peso unitario (KN/mq) = 0,03 m x 1 KN/mq = 0,03 KN/mq

  • incidenza tramezzi 1 KN/mq
  • incidenza impianti 0,5 KN/mq

Peso qp totale:  0,016 KN/mq + 1,44 KN/mq + 0,03 KN/mq + 1 KN/mq + 0,5 KN/mq = 2,49 KN/mq

Sovraccarico accidentale

Da normativa, per edificio ad uso ospedaliero, qa = 3 KN/mq

Trovati qsqp e qa, li inserisco nella tabella Excel e trovo il carico totale distribuito sulla trave qu (KN/mq).

Trovo Mmax.

Scelgo una delle tre classi di acciaio strutturale, nel mio caso S235 con la tensione caratteristica di snervamento pari a fyk = 235 MPa che è il valore che distingue un acciaio da un altro.

Per il dimensionamento della sezione in acciaio, dobbiamo determinare il modulo di resistenza a flessione minimo da utilizzare affinché la tensione massima del materiale non superi la tensione di progetto.

Trovo la tensione di progetto fd dalla quale mi ricavo il modulo di resistenza minimo rispetto all'asse x  Wx,min = 504,07. Con questo parametro ricavo la sezione della trave IPE ( IPE 550) consultando la tabella dei Profilati metallici sul sito www.oppo.it che ha un peso 1,06kN/m.

 

Forum:

III ESERCITAZIONE: verifica deformabilità di una mensola ( tecnologie: legno, acciaio, calcestruzzo armato)

Per la terza esercitazione dovevamo verificare la deformabilità di una mensola con l'ausilio di un foglio di calcolo excell, composto di tre fogli, uno per ognuna delle tre tecnologie da analizzare.

Il metodo di calcolo qui utilizzato  simile nella prima parte a quello utilizzato nella seconda esercitazione, ossia poniamo la tensione massima della trave pari a quella di progetto del materiale.

Partiremo quindi da un telaio di nostra scelta

La mensola da noi analizzata avrà un interasse pari a 3,5 m e una luce pari a 2 m.

Andremo quindi a inserire tali valori nei tre fogli di calcolo excell.

 

LEGNO

Per poter completare le colonne che seguono analizzeremo le diverse tecnologie di solaio, partendo dal legno.

Passiamo quindi a definire quali sono gli elementi portanti di un solaio in legno e quali glie elemnti portati.

Per questa prima tecnologia glie elementi portanti saranno composti da travetti in legno 10 cm x 15 cm e dal tavolato.Quindi:

qs: travetti = 6 KN/mc  x 2( 0,1 m x 0,15 m)= 18 KN/mq

      tavolato= 6 KN/mc  x 0,035 m = 0,21 KN/mq

qs= 0,39 KN/mq

Invece per quanto riguardi gli elementi portati questi sono composti da massetto, sottofondo di allettamento, pavimento. Quindi:

qp: massetto= 20 KN/mc x 0,04 m= 0,80 KN/mq

      allettamento= 20 KN/mc x 0,03 m = 0,6 KN/mq

      pavimento= 4 KN/mq

      incidenza impianti= 0,1 KN/mq

      incidenza tramezzi= 1,6 KN/mq

qp= 3,5 KN/mq

Per quanto riguarda invece il carico accidentale esso è stabilito dalla normativa e dipende dall'uso a cui è adibito l'edificio che stiamo analizzando. Nel nostro caso essendo l'edificio adibito ad uso di civile abitazione

qa= 2 KN/mq

Inseriamo quindi i valori ottenuti all'interno del foglio di calcolo excell relativo al legno

Calcoleremo quindi il carico ultimo gravante sulla trave attraverso la formula

qu= (1,3qs + 1,5qp + 1,5qa) x i

Inserendo poi la luce possiamo calcolare ora il momento massimo M max della mensola 

M max= ql^2/2

Ossia la formula parametrica per il calcolo del momento max di una mensola

M(s)= ql x s - qs^2/2

M(l)= ql^2 - ql^2/2= ql^2/2

Andiamo quindi ora a definire la tipologia di legno da utilizzare per la nostra sezione

Utilizzando un legno massiccio C24 la nostra tensione caratteristica sarà pari a fk= 24 N/mm^2

Possiamo quindi ricavare la tensione di progetto

fd= kmod x fk/ ym

dove kmod è pari a 0,8 e ym pari a 1,5

Fissando ora una base per la nostra sezione, calcoleremo l'altezza min

H min=√ 6 Mmax/ b x fd

Ingegnerizziamo quindi il valore scegliendo un'altezza compatibile con i profilati sul mercato subito maggiore a quella trovata.

Una volta dimensionata la nostra sezione dobbiamo calcolare l'abbassamento della nostra mensola: essendo una verifica ad una deformazione e non al collasso, questa srà una verifica agli SLE (Stati Limite di Esercizio)

Ricalcoreremo quindi il carico gravante sulla mensola agli SLE per la combinazione ad uso frequente

qe= (qs + qp + ψ1j) x i

Possiamo ora calcolare il modulo di inerzia 

Ix= (b x h^3)/ 12

Avendo anche definito il modulo elastico E del materiale possiamo infine calcolare l'abbassamento massimo della mensola

v max= ql^4/ 8EI

Secondo la normativa deve essere verificato che il rapporto tra la luce della trave e l'abbassamento max sia maggiore di 250

l = 2 m e vmax= 0,23 cm

l / v max= 200 / 0,23= 869,56 cm > 250

 

ACCIAIO

Calcoleremo ora l'abbassamento max di una trave per la tecnologia dell'acciaio

Per quanto riguarda un solaio in acciaio dobbiamo prima di tutto calcolare nuovamente il carico strutturale, permanente e accidentale, usando lo stesso procedimento adottato per il legno

Il carico strutturale sarà comopsto da lamiera grecata e getto in cls armato per un totale di

qs= 1,8 KN/mq 

I carichi portati saranno invece composti da massetto, pavimento ed isolante per un totale di

qp= 2,7 KN/mq

il carico accidentale rimarrà qa= 2 KN/mq da normativa

Inseriamo quindi i nuovi valori nel foglio di calcolo excell dell'acciaio

Ottengo quindi il carico ultimo qu attraverso la formula

qu= 1,3qs + 1,5qp + 1,5qa

Avendo il carico ultimo e la luce della trave possiamo calcolare il momento max della mensola

M max= ql^2/2

Sciegliamo il tipo di acciaio da utilizzare per la nostra sezione e ne inseriamo la tensione caratteristica, nel nostro caso fk=235 N/mm^2

Siamo quindi in grado di ricavare la tensione di progetto

fd= fk/ ys

dove ys è pari per l'acciaio a 1,05

Ora calcoleremo il modulo di resistenza a flessione min

Wmin= M max/ fd

Ottenuto il valore di Wmin possiamo dimensionare la trave attraverso un profilario scegliendo la sezione corrisponde al modulo di resistenza a flessione subito maggiore a quello ottenuto

Inseriamo ora i valori Ix e il peso corrispondente alla nostra sezione nel foglio di calcolo

Ricalcoliamo il carico allo SLE per combinazione frequente

qe=( qs + qp +ψ1j) x i + peso trave

Inserendo ora il modulo elastico E dell'acciaio possiamo calcolare l'abbassamento

v max= ql^4/ 8EI

Dobbiamo quindi per concludere verificare che il rapporto tra la luce della nostra trave e l'abbassamento max sia maggiore del valore definito dalla normativa

l / v max > 250

 

CLS ARMATO

Analizziamo infine la tecnologia del cls armato, ricalcolando nuovamente carico strutturale, portante e accidentale riguardanti un solaio in cls armato

In questo caso il carico strutturale sarà composto da pignatte, soletta in cls per un totale di

qs= 0,61 KN/mq

Gli elementi portati saranno invece il sottofondo di allettamento, l'isolante e il pavimento, per un totale di

qp= 2,7 KN/mq

il carico accidentale rimane qa= 2 KN/mq da normativa

Inseriamo quindi i nuovi valori all'interno del foglio di calcolo excell

Calcoleremo quindi il carico ultimo attraverso la formula

qu= 1,3qs + 1,5qp + 1,5qa

Ora avendo il carico ultimo e la luce della trave possiamo calcolare il momento massimo della mensola

M max= ql^2/2

Fissiamo in seguito l'acciaio che comporrà le bare della nostra sezione e ne riportiamo la tensione caratteristica( nel nostro caso fk= 450 N/ mm^2 e otteniamo da questa la tensione di progetto

fd= fyk/ ys

Allo stesso modo riportiamo la tensione caratteristica del calcestruzzo della nostra sezione

Nel nostro caso è stato scelto un calcestruzzo C30/37 con fck= 30 N/ mm^2

Otteniamo quindi la tensione di progetto fd= 0,85 x fck/ 1,5

Calcoliamo ora β= fcd/ (fcd + fd/n) dove n=15

Fissando una base otterremo l'altezza utile della nostra sezione hu, a cui dovrà essere sommata la lunghezza del copriferro. Il valore di H ottenuto dovrà poi essere ingegnerizzato.

Calcoliamo quindi ora l'area della sezione( A= b x H essendo una sezione rettangolare), il peso della nostra sezione, moltiplicando il peso specifico del materiale del l'area della sezione.

Avendo ora il peso della sezione possiamo calcolare il carico alla combinazione frequente

qe=(qs + qp + ψ1j) x i + peso

Riporto il modulo elastico E del materiale e calcolo il modulo di inerzia

I= b x h^3/12

Ora disponiamo quindi di tutti gli elementi necessari per calcolare l'abbassamento max della mensola

v max= ql^4/ 8EI

Dobbiamo infine verificare che questo soddisfi la condizione per cui il rapporto tra luce della trave e abbassamento max debba essere maggiore di 250

l / v max > 250

Pagine

Abbonamento a RSS - SdC(b) (LM PA)